1684 字
8 分钟
普物二总结Chap32~?磁学部分

普物二总结——电学部分#

Chap 32/33 The Steady Magnetic Field#

32-1 Basic phenomena#

history

first hard disk 1957:50 platters

Basic Phenomena of Magnetism#

  • attract small bits of metal
  • have two poles
  • like poles repel, and unlike poles attract
  • oersted experiment: B,iFB,i\to F
  • Solenoid is similar to a bar magnet
  • Interaction between electric currents

image-20241021084128203

the magnetic field line distribution is like electric field of a electdipole pair.

Magnetic Monopoles#

since no monopole has ever been found BdA=0\displaystyle \oint \vec B\cdot \mathrm d \vec A=0

Magnetic field#

(Ampere) molecular current: he bind solenoid and a magnet

electric charge in motion is the source of Magnetic Fields

Ampere’s Law(1820.12.4)#

Ampere’s Law

image-20241021085424748

  • Current element idsi\mathrm d \vec s
dF12i1i2ds1ds2r122=μ04πi2ds2×(i1ds1×r^12)r122\mathrm d F_{12}\propto \frac{i_1i_2\mathrm d s_1\mathrm d s_2}{r_{12}^2}=\frac{\mu _0}{4\pi } \cdot \frac{i_2\mathrm d \vec s_2\times (i_1\mathrm d \vec s_1\times \hat r_{12})}{r_{12}^2}

μ0=4π×107(NA2)\mu_0 =4\pi\times10^{-7}(N\cdot A^{-2})constant

the consider two examples

eg1

image-20241021085653200

dF12=μ04πi2ds2×(i1ds1×r^12)r122ds1r^12dF12=μ04πi1i2ds1ds2r122dF21=μ04πi1ds1×(i2ds2×r^21)r212ds2r^21dF21=μ04πi1i2ds1ds2r122dF12=dF21\begin{aligned} &d\vec{F}_{12}=\frac{\mu_0}{4\pi}\frac{i_2d\vec{s}_2\times(i_1d\vec{s}_1\times\hat{r}_{12})}{r_{12}^2} \\ &d\vec{s}_1\perp\hat{r}_{12} \\ &\therefore dF_{12}=\frac{\mu_0}{4\pi}\frac{i_1i_2ds_1ds_2}{r_{12}^2}\\&d\vec{F}_{21}=\frac{\mu_0}{4\pi}\frac{i_1d\vec{s}_1\times(i_2d\vec{s}_2\times\hat{r}_{21})}{r_{21}^2}\\&d\vec{s}_2\perp\hat{r}_{21}\\&\therefore dF_{21}=\frac{\mu_0}{4\pi}\frac{i_1i_2ds_1ds_2}{r_{12}^2}\\&\mathrm d F_{12}= \mathrm d F_{21}\end{aligned}

image-20241021085726219

dF12=0dF21=μ04πi1i2ds1ds2r122\mathrm d F_{12}=0\\\mathrm d F_{21}=\frac{\mu_0}{4\pi}\frac{i_1i_2\mathrm d s_1\mathrm d s_2}{r_{12}^2}

The Magnetic Induction Strength#

  • Coulomb’s Law
F12=14πε0q1q2r122r^12F12=q2E1,E1=F12q2E1=14πε0q1r122r^12\vec{F}_{12}=\frac1{4\pi\varepsilon_0}\frac{q_1q_2}{r_{12}^2}\hat{r}_{12}\\\vec{F}_{12}=q_2\vec{E}_1, \vec{E}_1=\frac{\vec{F}_{12}}{q_2}\\\therefore\vec{E}_1=\frac1{4\pi\varepsilon_0}\frac{q_1}{r_{12}^2}\hat{r}_{12}
  • Ampere’s Law dF12=μ04πi2ds2×(i1ds1×r^12)r122d\vec{F}_{12}=\frac{\mu_0}{4\pi}\frac{i_2d\vec{s}_2\times(i_1d\vec{s}_1\times\hat{r}_{12})}{r_{12}^2}

let us call i2ds2i_2\mathrm d \vec s_2 the element of a test electric current

dF2=i2ds2×μ04πL1i1ds1×r^12r122Define:B1=μ04πL1i1ds1×r^12r122dF2=i2ds2×B1\begin{aligned}&d\vec{F}_2=i_2d\vec{s}_2\times\frac{\mu_0}{4\pi}\oint_{\mathrm{L}_1}\frac{i_1d\vec{s}_1\times\hat{r}_{12}}{r_{12}^2}\\&\text{Define:}\quad\vec{B}_1=\frac{\mu_0}{4\pi}\oint_{\mathrm{L}_1}\frac{i_1d\vec{s}_1\times\hat{r}_{12}}{r_{12}^2}\\&\therefore\quad d\vec{F}_2=i_2d\vec{s}_2\times\vec{B}_1\end{aligned} dF2=i2ds2×B1dF2=i2ds2B1sinθθ=0,dF2=0θ=π2,dF2maximunDefine: B1=(dF2)maxi2ds2B1=μ04πL1i1ds1×r^12r122\begin{aligned} &d\vec{F}_2=i_2d\vec{s}_2\times\vec{B}_1 \\ &dF_2=i_2ds_2B_1\sin\theta \\ &\theta=0,dF_2=0 \\ &\theta=\frac{\pi}{2}, dF_{2} \mathrm{maximun} \\ &\boxed{\textbf{Define: }B_1=\frac{\left(dF_2\right)_{\max}}{i_2ds_2}} \\&\Rightarrow \vec B_1=\frac{\mu_0}{4\pi} \oint_{L_1} \frac{i_1\mathrm d \vec s_1 \times \hat r_{12}}{r_{12}^2} \end{aligned}

the Unit TT(Tesla=1N/(mA)=104 Gauss1N/(m\cdot A)=10^4 \mathrm{~Gauss})

32-2 The magneticn field of a Current-Carrying loop#

Biot-Savart Law

image-20241021091241369

B=μ04πLids×r^r2\vec{B}=\frac{\mu_0}{4\pi}\oint_L\frac{id\vec{s}\times\hat{r}}{r^2}

image-20241021091446777

B=A1A2dB=μ04πA1A2isinθdxr2r0=rsin(πθ)=rsinθ,r=r0sinθx=r0ctgθ,dx=r0dθsin2θB=θ1θ2μ0i4πsinθr0dθsin2θr02=μ0i4πr0θ1θ2sinθdθ=μ0i4πr0(cosθ1cosθ2)=μ0i2πr01r0\begin{aligned}&B=\int_{A_{1}}^{A_{2}}dB=\frac{\mu_{0}}{4\pi}\int_{A_{1}}^{A_{2}}\frac{i\sin\theta dx}{r^{2}}\\&r_{0}=r\sin(\pi-\theta)=r\sin\theta, r=\frac{r_{0}}{\sin\theta}\\&x=-r_{0}ctg\theta,\quad dx=\frac{r_{0}d\theta}{\sin^{2}\theta}\\&B=\int_{\theta_{1}}^{\theta_{2}}\frac{\mu_{0}i}{4\pi}\frac{\sin\theta\cdot\frac{r_{0}d\theta}{\sin^{2}\theta}}{r_{0}^{2}}=\frac{\mu_{0}i}{4\pi r_{0}}\int_{\theta_{1}}^{\theta_{2}}\sin\theta d\theta\\&=\frac{\mu_{0}i}{4\pi r_{0}}(\cos\theta_{1}-\cos\theta_{2})\\&=\frac{\mu _0i}{2\pi r_0}\propto \frac{1}{r_0}\end{aligned}

image-20241021091716824

dB=dBdB=μ04πids×r^r2dBx=dBcosαdB=μ04πidsr2sinθθ=π2,sinθ=1,r=r0/sinαBx=dBcosαB=μ0i4πsin2αr02cosαds=μ0i4πr02sin2αcosα2πRB=μ02iR2(R2+r02)32r0=0B=μ0i2R r0>>RB=μ0iR22r03\begin{aligned} &\left|d\vec{B}\right|=\left|d\vec{B}^{\prime}\right| \\ &d{\vec{B}}={\frac{\mu_{0}}{4\pi}}{\frac{id{\vec{s}}\times{\hat{r}}}{r^{2}}} \\ &dB_{x}=dB\cdot\cos\alpha \\ &dB=\frac{\mu_{0}}{4\pi}\frac{ids}{r^{2}}\sin\theta \\ &\theta=\frac{\pi}{2}, \sin\theta=1, r=r_{0}/\sin\alpha \\ &B_{x}=\int dB\cos\alpha \\ &B=\frac{\mu_{0}i}{4\pi}\oint\frac{\sin^{2}\alpha}{r_{0}^{2}}\cos\alpha ds\\&=\frac{\mu_{0}i}{4\pi r_{0}^{2}}\sin^{2}\alpha\cos\alpha\cdot2\pi R\\ &B=\frac{\mu_0}{2} \frac{iR^2}{(R^2+r_0^2)^{\frac{3}{2}}}\xrightarrow{r_0=0}B=\frac{\mu_0 i}{2R}\\\ &\xrightarrow {r_0>>R} B=\frac{\mu_0 i R^2}{2r_0^3} \end{aligned}

we can define magnetic dipole moment μ\mu (just like p=ql\vec p= q\vec l)

B=μ0iR22r03=μ0iπR22πr03=μ0iA2πr03Define: μ=iA=iπR2(μ=iA)B=μ02iR2r03=μ02πiπR2r03=μ02πμr03B=\frac{\mu_0iR^2}{2r_0^3}=\frac{\mu_0i\pi R^2}{2\pi r_0^3}=\frac{\mu_0iA}{2\pi r_0^3}\\\begin{aligned}&\text{Define: }\mu=iA=i\pi R^2(\vec \mu =i\vec A)\\&B=\frac{\mu_{0}}{2}\frac{iR^{2}}{r_{0}^{3}}=\frac{\mu_{0}}{2\pi}\frac{i\pi R^{2}}{r_{0}^{3}}=\frac{\mu_{0}}{2\pi}\frac{\mu}{r_{0}^{3}}\end{aligned}

image-20241023110346439

p757 sample33-5

image-20241023110610077

dB=μ0di2πd=μ0iadx2πdd=RcosθBx=dBcosθ=μ0i2πaRcos2θdx\mathrm d B=\frac{\mu _0 di}{2\pi d}=\frac{\mu _0 \frac{i}{a} dx}{2\pi d}\\ d=\frac{R}{\cos \theta }\Rightarrow B_x=\int dB\cos \theta=\frac{\mu_0i}{2\pi a R}\int \cos^2\theta dx

then

dx=d(Rtanθ)=Rdcos2θdx=\mathrm d (R\tan \theta)=R\frac{\mathrm d}{\cos^2\theta }

Bx=μ0i2πaθθdθ=μ0iπaα=μ0iπaarctana2RB_x=\frac{\mu_0 i}{2\pi a}\int_{-\theta}^{\theta}d\theta =\frac{\mu _0 i}{\pi a}\alpha =\frac{\mu_0 i}{\pi a}\arctan \frac{a}{2R}

R>>a:(αtanα)B=μ0i2πRR>>a:(\alpha \to \tan \alpha)B=\frac{\mu_0 i}{2\pi R}

R0,B=μ0i2aR\to 0,B=\frac{\mu_0i}{2a}

Bohr model of the hydrogen atom
a0=0.529A=5.29×1011mν=6.63×1015Hzi=eν=1.60×1019×6.63×1015=1.63×103AB=μ0i2R=4π×107×1.06×1032×5.29×1011=12.6TμB=iA=1.63×103×π×(5.29×1011)2=0.923×1023Am2\begin{aligned}&a_0=0.529A=5.29\times10^{-11}m\\&\nu=6.63\times10^{15}Hz\\&i=e\nu=1.60\times10^{-19}\times6.63\times10^{15}=1.63\times10^{-3}A\\&B=\frac{\mu_0i}{2R}=\frac{4\pi\times10^{-7}\times1.06\times10^{-3}}{2\times5.29\times10^{-11}}=12.6T\\&\mu_\mathrm{B}=iA=1.63\times10^{-3}\times\pi\times(5.29\times10^{-11})^2\\&=0.923\times10^{-23}A\cdot m^2\end{aligned}

called as Bohr Magnon

B of Solenoid#

Solenoid

A constant magnetic field can (in principle) be produced by an \infty​ sheet of current. In practice, however, a constant magnetic field is often produced by a solenoid.

Parameters:i,n,R,Li,n,R,L,we assume R<<LR<<L

image-20241023112023529

for a circular loop

B=μ02iR2(R2+r02)3/2B=\frac{\mu_0}{2}\frac{iR^2}{\left(R^2+r_0^2\right)^{3/2}} dB=μ02R2indl[R2+(xl)2]3/2B=μ02L/2L/2R2indl[R2+(xl)2]3/2r=R2+(xl)2=RsinβxlR=ctgβdl=Rsin2βdβ\begin{aligned} &dB=\frac{\mu_{0}}{2}\frac{R^{2}indl}{\left[R^{2}+(x-l)^{2}\right]^{3/2}} \\ &B=\frac{\mu_{0}}{2}\int_{-L/2}^{L/2}\frac{R^{2}indl}{\left[R^{2}+\left(x-l\right)^{2}\right]^{3/2}} \\ &r={\sqrt{R^{2}+\left(x-l\right)^{2}}}={\frac{R}{\sin\beta}} \\ &\frac{x-l}{R}=ctg\beta\Rightarrow dl=\frac{R}{\sin^{2}\beta}d\beta \end{aligned}

then

B=μ02β1β2R2niRsin2βdβ(R2sin2β)3/2=μ02niβ1β2sinβdβ=12μ0ni(cosβ1cosβ2)\begin{aligned} &B=\frac{\mu_{0}}{2}\int_{\beta_{1}}^{\beta_{2}}\frac{R^{2}ni\frac{R}{\sin^{2}\beta}d\beta}{(\frac{R^{2}}{\sin^{2}\beta})^{3/2}} \\ &=\frac{\mu_{0}}{2}\cdot ni\int_{\beta_{1}}^{\beta_{2}}\sin\beta d\beta \\ &=\frac12 \mu_{0}ni(\cos\beta_{1}-\cos\beta_{2}) \end{aligned}

use

cosβ1=x+L/2R2+(x+L/2)2cosβ2=xL/2R2+(xL/2)2\cos\beta_{1}=\frac{x+L/2}{\sqrt{R^{2}+\left(x+L/2\right)^{2}}}\\\cos\beta_{2}=\frac{x-L/2}{\sqrt{R^{2}+\left(x-L/2\right)^{2}}}

with

  • L,β1=0,β2=πL\to \infty ,\beta _1=0,\beta_2=\pi

    B=12μ0ni(1+1)=μ0niB=\frac{1}{2}\mu _0ni(1+1)=\mu_0ni

  • β1=0,β2=π2\beta _1=0,\beta_2=\frac{\pi}{2}

    B=12μ0ni(10)=12μ0niB=\frac{1}{2}\mu_0 n i(1-0)=\frac{1}{2}\mu_0 ni

image-20241023112523551

The field outside the ideal solenoid is zero.

egsolenoid

image-20241023112648636

B=12μ0ni(cosβ1cosβ2)B=\frac12 \mu_{0}ni(\cos\beta_{1}-\cos\beta_{2})

With this

ni=NiLjLdrL=jdr=Ni2l(R2R1)drcosβ2=cosβ1,cosβ1=ll2+r2\begin{aligned}&ni=\frac{Ni}{L}\Rightarrow\frac{jLdr}{L}=jdr=\frac{Ni}{2l(R_{2}-R_{1})} dr\\&\cos\beta_{2}=-\cos\beta_{1},\cos\beta_{1}=\frac{l}{\sqrt{l^{2}+r^{2}}}\end{aligned}dB=12μ0Ni2l(R2R1)2ll2+r2drB=μ0jlR1R2drl2+r2=μ0jllnR2+R22+l2R1+R12+l2\begin{aligned} &dB=\frac{1}{2} \mu_{0} \frac{Ni}{2l(R_{2}-R_{1})}\cdot\frac{2l}{\sqrt{l^{2}+r^{2}}} dr \\ &B=\mu_{0}jl\int_{R_{1}}^{R_{2}}\frac{dr}{\sqrt{l^{2}+r^{2}}} \\ &=\mu_{0}jl\ln\frac{R_{2}+\sqrt{R_{2}^{2}+l^{2}}}{R_{1}+\sqrt{R_{1}^{2}+l^{2}}} \end{aligned}

in practice

we define γ=lR1,α=R2R1\gamma=\frac{l}{R_1},\alpha =\frac{R_2}{R_1}

B0=μ0hR1γlnα+α2+γ21+1+γ2B_0=\mu_0hR_1\gamma \ln \frac{\alpha +\sqrt {\alpha^2+\gamma^2}}{1+\sqrt{1+\gamma^2}}

32-3 Gauss Law and Ampere’s Loop Law for B#

let’s first review

for E\vec E

  • Gauss law:

    EdA=1ε0q,E=ρeε0\oint\vec{E}\bullet d\vec{A}=\frac1{\varepsilon_0}\sum q, \nabla\bullet\vec{E}=\frac{\rho_e}{\varepsilon_0}
  • Loop law

    Edl=0,×E=0(E=V)\oint \vec E\bullet d\vec l =0,\nabla \times \vec E=0(\vec E=-\nabla V)
ΦB=BdA=BcosθdA(Unit:Tm2=Wb)\Phi_B=\iint\vec{B}\bullet d\vec{A}=\iint B\cos\theta dA(Unit :T\cdot m^2=Wb)

for B\vec B

  • Gauss law:

    BdA=0,B=0\oint\vec{B}\bullet d\vec{A}=0, \nabla\bullet\vec{B}=0
  • Loop law

    Bdl=μ0i,×B=μ0J\oint \vec B\bullet d\vec l =\mu _0\sum i,\nabla \times \vec B=\mu_0\vec J
fact…
Bdl=μ0i+μ0ε0ddtSEdS\oint \vec B\mathrm d \vec l =\mu_0\sum i+\mu_0\varepsilon_0\frac{\mathrm d}{\mathrm dt}\int _S\vec E\mathrm d \vec S

The differential form is

×B=μ0J+μ0ε0Et\nabla \times \vec B =\mu_0\vec J+\mu_0\varepsilon _0\frac{\partial \vec E}{\partial t}

image-20241030100813902

Bdl=μ0(i1+i32i2)\oint \vec B\cdot \mathrm d\vec l=\mu_0(i_1+i_3-2i_2)
egs

[e.g.1]

inf long wire RR,i uniform distribution

B2πr=μ0ir2πR2B=μ0ir2πR2(r<R)rB\cdot 2\pi r=\mu_0i\cdot \frac{r^2}{\pi R^2}\Rightarrow B=\frac{\mu_0 i r}{2\pi R^2}(r<R)\propto rB2πr=μ0iB=μ0i2πr(r>R)1rB\cdot 2\pi r=\mu_0i\Rightarrow B=\frac{\mu_0 i }{2\pi r}(r>R)\propto \frac{1}{r}

[e.g.2]

Consider an \infty​ sheet of current described by n wires/length each carrying current i into the screen as shown. Calculate the B field.

for symmetrydirection on the screen

we catch a w*w square

Bdl=2Bw=μ0nwiB=12μ0ni\oint \vec B \bullet \mathrm d\vec l=2Bw=\mu_0 n w i\Rightarrow B=\frac{1}{2}\mu_0 ni

[e.g.3]

calculate B for \infty​ solenoid

view it as two sheets

Bdl=Bw=μ0nwiB=μ0ni\oint \vec B\bullet \mathrm d \vec l =Bw=\mu _0 n w i\Rightarrow B=\mu_0 ni

[e.g.4]

the B of Toroid (NN total turns with current i)

image-20241030102530083

Bdl=B2πr=μ0NiB=μ0ni(n=N2πr)\oint \vec B\bullet \mathrm d \vec l=B2\pi r=\mu_0Ni\to B=\mu _0ni(n=\frac{N}{2\pi r})

::: tip[Application]

  • Power door locks

  • Magnetic cranes

  • Electronic Switch “relay

:::

32-4 The magnetic force on a carrying-current wire#

remember

dF=ids×B(dF2=i2ds2×(L1i1ds1×r^12r122))\mathrm d \vec F=i\mathrm d\vec s\times \vec B(\mathrm d \vec F_{2} =i_2\mathrm d\vec s_2\times \left(\oint _{L_1}\frac{i_1\mathrm d \vec s_1 \times \hat r_{12}}{r^2_{12}}\right))
EG32-5,P738

image-20241030103224866

F2=F=0πiBRdθsinθ=2iBRF_{2}=F_{\perp}=\int_{0}^{\pi}iBR\mathrm d \theta \sin\theta=2iBRF=F1+F2+F3=iB(2L+2R)F=F_1+F_2+F_3=iB(2L+2R)

for two parallel conductors

image-20241030103700752

f=μ0i1i22πdi1=i2=iifdμ02πf=\frac{\mu_0i_1i_2}{2\pi d}\xRightarrow{i_1=i_2=i}i\sqrt{\frac{fd}{\frac{\mu_0}{2\pi}}}

we define i=1Ai=1A to be the current that make two 1m1m apart parallel conductors have force density 2×107N/m2\times 10^{-7}N/m

for convenience sake, we define n^\hat n the unit normal vector of current loop

μ=iAn^τ=μ×B\vec \mu =iA\hat n\\\vec \tau=\vec \mu\times \vec B

this holds for arbitrary shape loop

image-20241030104543971

dF1=ids1Bsinθ1dF2=ids2Bsinθ2dF1=dF2=iBdhdτ=dF1x1+dF2x2=iBdA\begin{aligned}&dF_{1}=ids_{1}B\sin \theta _1\\&dF_2=ids_2 B\sin \theta _2\\&dF_1=dF_2=iBdh\\&d\tau =dF_1x_1+dF_2x_2=iBdA\end{aligned}

for magnetic dipole

we define τ=iA(n×B)\vec \tau=iA(\vec n \times \vec B)

then

Up=pτdθ=μBsinθdθ=μBcosθ=μBU=μBU_p=-\int_{\infty}^{p} \tau \cdot d\vec \theta =\int \mu B \sin \theta d\theta=\mu B \cos \theta =\vec \mu \bullet \vec B\Rightarrow U=-\mu \bullet \vec B

remind that

p=qd\vec p=q\vec dτ=p×E\vec \tau =\vec p\times \vec EU=pEU=-\vec p\bullet \vec E

we have

μ=Ai\mu =A\vec iτ=μ×B\vec \tau =\vec \mu \times \vec BU=μBU=-\vec \mu \bullet \vec B

image-20241030105437447

Systemμ(J/T)
Nucleus of N atom2.0x10^-28
Proton1.4x10^-26
Electron9.3x10^-24
N atom2.8x10^-23
Typical small coil5.4x10^-6
Small bar magnet5.0
Superconducting coil400
The Earth8.0x10^22
MRI (Magnetic Resonance Imaging)

Proton Spin and Magnetic Moment:

  • A single proton possesses a positive charge +e+|e| and an intrinsic angular momentum, known as “spin.”
  • Naively imagining the charge circulating in a loop gives rise to a magnetic dipole moment μ\mu.

Behavior in an External Magnetic Field ( B ):

  • Classically: Torques will be present unless the magnetic moment μ\vec{\mu} is aligned with or against the magnetic field ( B ).

  • Quantum Mechanics (QM): The spin is always aligned either with or against the magnetic field ( B ).

    • Anti-aligned State: Energy U2=μBU_2 = \mu B
    • Aligned State: Energy U1=μBU_1 = -\mu B
  • Energy Difference: ΔU=U2U1=2μB\Delta U = U_2 - U_1 = 2\mu B

μproton=1.36×1026 A m2B=1 Tesla (=104 Gauss)ΔU=2μB=2.7×1026J\begin{aligned}&\mu_{proton}=1.36\times10^{-26}\mathrm{~A~m}^2\quad B=1\text{ Tesla }(=10^4\mathrm{~Gauss})\\&\Delta U=2\mu B=2.7\times10^{-26}\mathrm{J}\end{aligned}

hν=ΔUν=2.7×10266.6×1034Js=41MHzh\nu =\Delta U\Rightarrow \nu=\frac{2.7\times 10^{-26}}{6.6\times 10^{-34}Js}=41\mathrm{MHz}

more applications

app

image-20241030110554772

  1. Magnetic Force on a Current Loop:
    • When a loop of wire carrying an electric current is placed in a magnetic field, the field exerts a torque on the loop, attempting to align the loop’s magnetic dipole moment with the field.
  2. Structure of a Galvanometer:
    • Inside a galvanometer, there is a rotating coil attached to a pivot.
    • To return the pointer to its equilibrium position, a spring is included in the galvanometer, which creates a torque in the opposite direction to the rotation of the coil.

motor is almost the same ,we just skip it

  • fixed voltagemotors
  • fixed currentmotors

32-5 The motion of a charge in a magnetic field#

we define Lorentz Force as

F=qv×BF=qvBsinθ\begin{align*} \vec F &=q\vec v\times \vec B\\ F&=qvB\sin \theta \end{align*}

we can find that

FL=qv×B\vec F_L=q\vec v \times \vec Bis the microscopic des.

dFA=ids×B\mathrm d \vec F_A = id \vec s \times \vec Bis the macroscopic des.

image-20241104081624457

from this image we can confirm that

Δq=enAuΔti=ΔqΔt=nAueuB,sinθ=1,fL=euBFA=nA×ΔsfL=BiΔs\begin{align*} \Delta q=enAu\Delta t\\ i=\frac{\Delta q}{\Delta t}=nAue\\ \vec u\perp \vec B,\sin \theta =1,f_L=euB\\ F_A=nA\times \Delta s f_L=Bi\Delta s \end{align*}

then let’s talk about the motion of a charged part. in a magnetic field

  • vB\vec v\perp \vec B

    • F=qc×BqvB=nmv2R,R=mvqB\vec F =q\vec c\times \vec B\\qvB=n\frac{mv^2}{R},R=\frac{mv}{qB}
    • period : T=2πRv=2πmqBT=\frac{2\pi R}{v}=\frac{2\pi m}{qB}

    • frequency : f=qB2πmf=\frac{qB}{2\pi m}

  • v=vsinθ,v=vcosθv_\perp =v\sin \theta ,v_{||} =v\cos \theta

    • image-20241104082258066
    • Period : T=2πRvT=\frac{2\pi R}{v\perp}
    • h=vT=2πmvqBh=v_{||}T =\frac{2\pi mv_{||}}{qB}
appmirror

image-20241104082556278

R=mvqBh=2πmvqBθ0,vvθ,vvR=\frac{mv_\perp}{qB}\\ h=\frac{2\pi mv }{qB}\\ \theta \to 0,v_\perp \to v\theta ,v_{||}\to v

in uniform magnetic field

the path is just circles(directions following the signal of charge)

image-20241104082751733

the detailed application is

  • convex lens
  • magnetic mirror
appbottle
R=mvperpqBR=\frac{mv_perp}{qB}

the magnetic bottle is to confine the hot ionized gases and control the thermonuclear fusion

when taking the strong B, and we can have a small R constraint


discovery of electron by J.J.Thomson in 1897

image-20241104083107468

F=qE+qv×BeE=evBv=EBy=12eEm(Lv)2=eEL22mv2em=2yEB2L2=1.759×1011C/kg\begin{align*} \vec F=q\vec E+q\vec v\times \vec B\\eE=evB\Rightarrow v=\frac{E}{B}\\y=\frac{1}{2}\frac{eE}{m}\left(\frac{L}{v}\right)^2=\frac{eEL^2}{2mv^2}\\\Rightarrow\frac{e}{m}=\frac{2yE}{B^2L^2} =1.759\times 10^{11}C/kg \end{align*}
mass spectrometer

image-20241104083413118

R=mvqB12mv2=qVmq=R2B22VR=\frac{mv}{qB}\\\frac{1}{2}mv^2=qV \\\Rightarrow \frac{m}{q}=\frac{R^2B^2}{2V}

detailedly we accelerate electrons in a known potential U=qvU=qv

with looking at the m/qm/q value we can distinguish different particles and approximately calculate their propotion

  • paleoceanography
  • space exploration
  • detect chemical and bio. Weapons(anthrax)
movement measurement
R=mvqB=2mKqBR=\frac{mv}{qB}=\frac{\sqrt {2mK}}{qB}
the cyclotron
qvB=mv2Rf=qB2πmvM=BRqmEK=12mvM2=B2R2q22mqvB=m\frac{v^2}{R}\\ f=\frac{qB}{2\pi m}\\ v_M=BR\frac{q}{m}\\ E_K=\frac{1}{2}mv_M^2 =\frac{B^2R^2q^2}{2m}

image-20241104084028471

with relaticity effect

m=m01v2c2T=2πm0qB×11v2c2B1v2c2=const\begin{align} m=\frac{m_0}{\sqrt{1-\frac{v^2}{c^2}}}\\ T=\frac{2\pi m_0}{qB}\times \frac{1}{\sqrt {1-\frac{v^2}{c^2}}}\\ B\sqrt{1-\frac{v^2}{c^2}}=\mathrm {const} \end{align}

for proton

vc=0.31v2c2=0.95\frac{v}{c}=0.3 \rightarrow \sqrt{1-\frac{v^2}{c^2}}=0.95

we can have synchrotron withe much larger magnitude B and N

The Hall Effect#

image-20241104084453456

when at equilibrium

qvB=qE,E=vBVAA=vBb=jnqBb=iBnqd=κiBd\begin{align} qvB=qE,E=vB\\ V_{AA'}=vBb=\frac{j}{nq} Bb=\frac{iB}{nqd}=\kappa \frac{iB}{d}\\ \end{align}

(remember jbdij\cdot b\cdot d\equiv i Please)

we define the charge drift speed as vv,and the volume density of charge is nn,the Hall resistance RHR_H(this is a definition with replacement ,not a real concept )

n=iBqd1VAARH=VAAi=Bnqdn=\frac{iB}{qd}\frac{1}{V_{AA'}}\\R_H=\frac{V_{AA'}}{i}=\frac{B}{nqd}
the quantized hall effect

when detect hall effect on two-dimensional hall effect , it;s displayed not linearly

ΔHi=Bnqd\frac{\Delta _H}{i}=\frac{B}{nqd}

image-20241104085112738

with const n,q,dn,q,d,RHBR_H\propto B

1986 Nobel Prize he2=25812.806Ω\frac{h}{e^2}=25812.806\Omega we can define it as new standard resistance unit since it’s made of some basic const in late physic

App of Hall effect#

  • Measure B
  • Measure i P
  • Transfer DC->AC

a specific field is ABS: work as B tensor,detect shaft rotation speed and beam oscillating voltage

VAA=1nqiBdV_{AA'} = \frac{1}{nq}\cdot \frac{iB}{d}

Chap 34 The Faraday’s Law of Induction#

General Review#

  • Electrostatics
    • motion of qq in E\vec E
    • EdA=qclsε\displaystyle \int \vec E\cdot d\vec A =\frac{\sum q_{cls}}{\varepsilon}
  • Magnetostatics
    • motion of qq in B\vec B
  • Electrodynamics
    • dBdt0E\frac{d\vec B}{d t}\neq 0\Rightarrow \vec E
    • AC circuit,inductors,transformers
    • dEdt0B\frac{d\vec E}{d t}\neq 0\Rightarrow \vec B

34-1/2 Basic Phenomena & Faraday’s Law of Induction#

dΦBdtiindε=dΦBdt\frac{d\Phi_B}{dt}\to i_{ind}\\ \varepsilon =-\frac{d\Phi_B}{dt}

just treat ε\varepsilon‘s sign with right hand rule

34-3 Lenz’s Law#

The induced current will appear in such a direction that it opposes the change in flux that produced it.

image-20241106104234350

laminated materials can reduce eddy currents

app : magnetic Induction
  • E-M Cannon: alternating voltage to a solenoid ,then the flux changes -> current -> force
  • Tape/Hard Drive/ZIP Readout : Tiny coil responds to change in flux as the magnetic domains (encoding 0’s or 1’s) go by.
  • Credit Card Readerswipe -> large signal
  • Magnetic Levitation (Maglev) Trains: eddy currents produce field in opposite direction

34-4 Motional emf and Induced emf#

  • Motional emf: dSdtdΦdtε\frac{d S}{d t}\to \frac{d\Phi}{dt}\to \varepsilon
  • Induced emf: dBdtdΦdtε\frac{d B}{d t}\to \frac{d\Phi}{dt}\to \varepsilon

Motional emf#

Lorentz force results in a motional emf

f=e(v×B)\vec f =-e(\vec v\times \vec B)

Non electrostatic force

K=fe=v×B\vec K=\frac{\vec f}{-e}=\vec v\times \vec B

Motional emf

ε=+Kdl=CD(v×B)dl\varepsilon =\int_{-}^+ \vec K \bullet d\vec l=\int_{C}^D (\vec v\times \vec B)\cdot d\vec l

Lorentz force can’t do work to electron

P781 34-4

image-20241116093051415

Sol1:

dε=(v×B)dr=Bvdrε=12BωR2d\varepsilon =(\vec v\times \vec B)\cdot d\vec r =-Bvdr\\ \varepsilon =-\frac{1}{2}B\omega R^2

Sol2:

ε=dΦBdt=12dB(12R2θ)dt\varepsilon =\frac{-d\Phi_B}{dt}=-\frac{1}{2}\frac{dB(\frac{1}{2}R^2\theta)}{dt}

direction +o -a

Appand Motors

image-20241116093500033

image-20241116093524271

ΦB=BAcosωtε=BAωsinωt\Phi_B=BA\cos \omega t\\\varepsilon =BA\omega \sin \omega t

Induced emf#

  • Vortex electric field

a increasing magnetic field pass through the loop will generate a ringing electric field.

ε=Edl\varepsilon =\oint \vec E\cdot d\vec l

image-20241116094304723

ε=dΦBdt=Ak\varepsilon =-\frac{d\Phi_B}{dt}=-Ak W=εq0=q0Einduced2πrε=Einduced2πr=Einduceddl\begin{aligned}&W=\varepsilon q_{0}=q_{0}E_{induced}\cdot2\pi r\\&\varepsilon=E_{induced}\cdot2\pi r=\oint\vec{E}_{induced}\cdot d\vec{l}\end{aligned} ε=dΦBdtEinduceddl=dΦBdt\varepsilon=-\frac{d\Phi_{B}}{dt}\\\therefore\quad\oint\vec{E}_{induced}\cdot d\vec{l}=-\frac{d\Phi_{B}}{dt}

it just implide that

×E=Bt\nabla \times \vec E=-\frac{\partial \vec B}{\partial t} E=Esta+EindEdl=(Esta+Eind)dl=0+(dΦBdt)=dΦBdt\begin{aligned}&\vec{E}=\vec{E}_{sta}+\vec{E}_{ind}\\&\therefore\quad\oint\vec{E}\cdot d\vec{l}=\oint(\vec{E}_{sta}+\vec{E}_{ind})\cdot d\vec{l}=0+(-\frac{d\Phi_B}{dt})=-\frac{d\Phi_B}{dt}\end{aligned}

Es is set up by charges, Ein is set up by changing magnetic field. Both kinds of electric field exert on charges.

The betatron

image-20241116095020370

Betatron produces a pulse rather than a continuous beam.

34-5. Induction & Relative Motion#

image-20241116095155600

Motional emf:V=ν+νa,Fb=N+FidWN=N(νdt)=FBsinθ(νdt)=(qVB)(νd/V)(νdt)=(qBνd)(νdt)=(qBν)(νddt)=qBνdlWN=qBvdl=qBvDε=WN/q=BDvdWi=Fidl=qvBdlWi=qvBD=WN\begin{aligned}&\text{Motional emf:}\\&\vec{V}=\vec{\nu}+\vec{\nu}_{a},\quad\vec{F}_{b}=\vec{N}+\vec{F}_{i}\\&\mathrm{d}W_{N}=N(\nu\mathrm{d}t)\\&=F_{B}\sin\theta(\nu\mathrm{d}t)\\&=(qVB)(\nu_{d}/V)(\nu\mathrm{d}t)\\&=(qB\nu_{d})(\nu\mathrm{d}t)\\&=(qB\nu)(\nu_{d}\mathrm{d}t)\\&=qB\nu dl\\&W_N=\int qBvdl=qBvD\\&\varepsilon = W_N/q=BDv \\&dW_i=-F_idl=-qvBdl\\&W_i=-qvBD=-W_N\end{aligned} ε=(E+v×B)dl\varepsilon =\int (\vec E'+\vec v\times \vec B)\cdot d\vec l

image-20241116095538359

Chapter 35(36) Inductance and Magnetic properties of materials#

35-1 Inductance#

Mutual Inductance#

i1 change s2 induced emf ε2\varepsilon _2

i2 change s1 induced emf ε1\varepsilon _1

M12=Ψ12i1=N2Φ12i1;ε2=dΨ12dt=M12di1dt,(i1change)M21=Ψ21i2=N1Φ21i2;ε1=dΨ21dt=M21di2dt,(i2change)M_{12}=\frac{\Psi_{12}}{i_{1}}=\frac{N_{2}\Phi_{12}}{i_{1}};\quad\varepsilon_{2}=-\frac{d\Psi_{12}}{dt}=-M_{12} \frac{di_{1}}{dt},\quad(i_{1} \mathrm{change})\\M_{21}=\frac{\Psi_{21}}{i_{2}}=\frac{N_{1}\Phi_{21}}{i_{2}};\quad\varepsilon_{1}=-\frac{d\Psi_{21}}{dt}=-M_{21} \frac{di_{2}}{dt},\quad(i_{2} \mathrm{change})

M12,M21M_{12},M_{21} are called inductance constant (Unit: Henry)

image-20241116095932154

B=μ0ni,B1=μ0N1li1Ψ12=N2B1A=μ0N1N2Ali1ε2=Mdi1dtM12=Ψ12i1=μ0N1N2Al=25×106×10V=4π1071000×20×1031=250μV=25×106H=25μH\begin{aligned} &B=\mu_{0}ni, B_{1}=\mu_{0} \frac{N_{1}}{l}i_{1} \\ &\Psi_{_{12}}=N_{_2}B_{_1}A=\mu_{_0} \frac{N_{_1}N_{_2}A}{l}i_{_1}&& \varepsilon_{2}=-M\frac{di_{1}}{dt} \\ &M_{12}=\frac{\Psi_{_{12}}}{i_{_1}}=\mu_{_0}\frac{N_{_1}N_{_2}A}{l}&& =-25\times10^{-6}\times10V \\ &=4\pi\cdot10^{-7}\frac{1000\times20\times10^{-3}}{1}&& |=-250 \mu V \\ &=25\times10^{-6}H=25 \mu H \\ \end{aligned}
AppInductance
  • Transformers
  • Airport Metal Detectors
  • Pacemaker

Self-Inductance#

image-20241116100138609

ψ=NBA=LiεL=dψdt=LdidtVbVa=Ldidt\begin{aligned}&\psi=NBA=Li\\&\varepsilon_{L}=-\frac{d\psi}{dt}=-L\frac{di}{dt}\\&V_{b}-V_{a}=-L\frac{di}{dt}\end{aligned}

L —— self-inductance

image-20241116100749029

L=BdAiL=\frac{\displaystyle \iint \vec B \cdot d\vec A }{i} ε=dΦBdt=Ldidt\varepsilon =-\frac{d\Phi_B }{dt}=-L\frac{di}{dt}

how to calculate self-inductance?

i,B,NLi,\vec B,N\to L

L=NΦBiεL=d(NΦB)dtL=\frac{N\Phi_B}{i}\to\varepsilon _L =-\frac{d(N\Phi_B)}{dt}

image-20241116101221305

Toroid of rectangular

image-20241116101304824

Bdl=μ0NiB=μ0iN2πrΦB=BdA=abμ0iN2πrhdr=μ0iNh2πabdrr=μ0iNh2πlnbaL=NΦBi=μ0N2h2πlnba\begin{gathered} \oint\vec{B}\bullet d\vec{l}=\mu_0N\boldsymbol{i} \\ B=\frac{\mu_0\boldsymbol{i}N}{2\pi r} \\ \boldsymbol{\Phi}_B=\int\int\vec{B}\bullet d\vec{A}=\int_a^b\frac{\mu_0\boldsymbol{i}N}{2\pi r}\boldsymbol{h}\mathrm{d}r \\ =\frac{\mu_0iNh}{2\pi}\int_a^b\frac{\mathrm{d}r}r=\frac{\mu_0iNh}{2\pi}\ln\frac ba\quad\therefore L=\frac{N\boldsymbol{\Phi}_B}i=\frac{\mu_0N^2\boldsymbol{h}}{2\pi}\ln\frac ba \end{gathered}
普物二总结Chap32~?磁学部分
https://zzw4257.cn/posts/basic-knowledge/physic2-2/
作者
zzw4257
发布于
2024-11-11
许可协议
CC BY-NC-SA 4.0