2347 字
12 分钟
普物二总结Chap25~Chap31电学部分

普物二总结——电学部分#

About the tutor

Prof.FangMinghu

[email protected]

  • E&M
  • Optics
  • Modern Physics

Intro#

All of simple physics in 5 equations

1.F=q(E+ν×B)2.EdA=Qinsideε03.BdA=04.Edl=dΦBdt5.Bdl=μ0I+μ0ε0dΦEdt\begin{aligned}&1. F=q(E+\nu\times B)\\&2.\iiint E\cdot dA=\frac{Q_{inside}}{\varepsilon_0}\\&3.\iiint B\cdot dA=0\\&4. \iint E\cdot dl=-\frac{d\Phi_B}{dt}\\&5. \iint B\cdot dl =\mu_0I+\mu_0\varepsilon_0 \frac{d\Phi_E}{dt}\end{aligned}

Gravity , Electric and Magnetic Force has magical similarity!

Chap. 25 Charge and Coulomb’s law#

Crucial constant nums

e=1.602×1019Ce=1.602\times 10^{-19}C

k=14πε0=9×109Nm2C2k=\frac{1}{4\pi \varepsilon _0}=9\times 10^{9}N\cdot m^2\cdot C^{-2}

1C=6×1018e1C=6\times 10^{18}e

me=9.1×1031kgm_e=9.1\times 10^{-31}kg

25-2#

1n,1p=3 quarks1n,1p=3 \mathrm{~quarks}

1p(+e)=2×(23e)+(13e)1p(+e)=2\times (\frac{2}{3}e)+(-\frac{1}{3}e)

1n(0)=2×(13e)+23e1n(0)=2\times (-\frac{1}{3}e)+\frac{2}{3}e

25-3#

F=14πε0q1q2r2r^\vec F=\frac{1}{4\pi \varepsilon _0} \cdot \frac{q_1q_2}{r^2}\hat r

Electrostatics in matter

Atom force H

Ionic Crystal force NaCl

Covalent Bond force H-H

Metal force Au

NOTE

Coulomb’s laws an exact result for stationary

charges and not an approximation form some higher

law.

  • Gravitational vs Electric Force FeFg=14πε0q1q2r2Gm1m2r2=4.17×1042\frac{F_e}{F_g}=\cfrac{\frac{1}{4\pi \varepsilon _0}\frac{q_1q_2}{r^2}}{G\frac{m_1m_2}{r^2}}=4.17\times 10^{42}
e.g 25-3

for a man ,he push his arms apart with a force of 450N,how many charge can he hold outstretched?

F=450NQ=rFk=4.47×104F=450N\\ Q=r\sqrt{\frac{F}{k}}=4.47\times 10^{-4}
e.g 25-3-2

How many electrons in a person by Feynman

treat people like water

λp=NAMr(H2O)×e(H2O)=3.3×1023e/g\lambda_p=\frac{NA}{M_r(H_2O)}\times e(H_2O)=3.3\times 10^{23}e/g

then ,assume he is 80kg

ne=λpm=2.6×1028en_e=\lambda _p m=2.6\times 10^{28}e

1% of a person

1%×2.6×1028×1.6×1019=4.2×107C1\%\times 2.6\times 10^{28}\times 1.6\times 10^{-19}=4.2\times 10^7C

then for two people 0.75m apart:

F=9×109×(4.2×107C0.75m)2=2.8×1025Wearth=6×1024kg×9.8m/s2F=9\times 10^{9}\times \left(\frac{4.2\times 10^7C}{0.75m}\right)^2=2.8\times 10^{25}\approx W_{earth}=6\times 10^{24}kg\times 9.8m/s^2
IMPORTANT

you should distinguish the difference between the vec and scalars

25-4 Conductors and Insulators#

  • Insulators : 1ec per cm3\leqslant 1 e_c ~\mathrm{per}~ cm^3,Glass,Plastics,Dry wood
  • Conductors : 1023ec per cm3\approx 10^{23} e_c ~\mathrm{per}~ cm^3, Aluminum,Copper,Silver…
  • Semiconductor : 10101012 per cm310^{10}\to 10^{12} ~\mathrm{per}~ cm^3, Silicon,Germanium
  • Superconductor : R=0,B=0R=0,B=0

(the following picture is from OCR,so some fault occurred )

Hg(Tc=4.2K,1911)NhSn(Tc=23K,1969),YBa2Cu3O,(Tc=90K,1987)HgBaCaCuO(Tc=156K,1988)ReO1,F2FeeA3 (Tc=55K,2008)(BaK)Fe2As2,(Tc=39K,2008)H3S(Tc=210K,High Pressure,2016)LaH10(Tc=250K,High Pressure,2019)Pe(Te,So)(Tc=144K,2008)(Ti,K,Rb,CS))Fes(Ses,(Tc=30K,2010).........ThNi2Se2,ThNi2S2(Tc=3.7K,2013)\begin{aligned}&\mathrm{Hg}\left(T_{c}{=}4.2K,1911\right)\\&\mathrm{NhSn}\left(T_{c}{=}23K,1969\right),\\&\mathrm{YBa}_{2}\mathrm{Cu}_{3}\mathrm{O},\quad(T_{c}{=}90K,1987)\\&\mathrm{HgBaCaCuO}\quad(T_{c}{=}156K,1988)\\&\mathrm{ReO}_{1},\mathrm{F}_{2}\mathrm{FeeA}_{3}\mathrm{~(T_{c}{=}55K,2008)}\\&\mathrm{(BaK)Fe}_{2}\mathrm{As}_{2},(T_{c}{=}39K,2008)\\&\mathrm{H}_{3}\mathrm{S}\quad(T_{c}{=}210\mathrm{K},\mathrm{High~Pressure},2016)\\&\mathrm{LaH}_{10}(T_{c}{=}250\mathrm{K},\mathrm{High~Pressure},2019)\\&\mathrm{Pe}(\mathrm{Te},\mathrm{So})\quad(T_{c}{=}144K,2008)\\&(\mathrm{Ti},\mathrm{K},\mathrm{Rb},\mathrm{CS}))\mathrm{Fe}_{s}(\mathrm{Se}_{s},\quad(T_{c}{=}30K,2010).........\\&\mathrm{ThNi}_{2}\mathrm{Se}_{2},\mathrm{ThNi}_{2}\mathrm{S}_{2}(T_{c}{=}3.7K,2013)\end{aligned}
usage of B=0B=0
  • NMR(Nuclear Magnetic Resonance)
  • Brain research
  • **Magnetic Levitation **(Maglev)

25-5 Continuous Charge Distribution#

The charge density

  • λ=dqdx\lambda =\frac{\mathrm d q}{\mathrm d x}
  • σ=dqdA\sigma =\frac{\mathrm d q}{\mathrm d A}
  • ρ=dqdV\rho =\frac{\mathrm d q}{\mathrm d V}

to calculate q0(distribution)ρq_0\to (\mathrm{distribution})\rho

dFq0=14πε0q0(ρdV)rr3(rr)\mathrm d\vec {F_{q_0}}=\frac{1}{4\pi \varepsilon _0}\frac{q_0(\rho \mathrm d V)}{|\vec r-\vec r'|^3} (\vec r-\vec r')
eg-ring

For a uniform ring of charge :

λ=q2πRdF=14πε0q0dqr2=14πε0q0λRdϕ(z2+R2)Fz=dFz=dFcosθ=14πε0q0λRdϕ(z2+R2)zz2+R2=14πε0q0λRz(z2+R2)3/202πdϕ=14πε0q0qz(z2+R2)3/2\begin{aligned} &\lambda=\frac{q}{2\pi R} \\ &dF=\frac{1}{4\pi\varepsilon_{0}}\frac{q_{0}dq}{r^{2}}=\frac{1}{4\pi\varepsilon_{0}}\frac{q_{0}\lambda Rd\phi}{(z^{2}+R^{2})} \\ &F_{z}=\int dF_{z}=\int dF\cos\theta \\ &=\int\frac1{4\pi\varepsilon_0}\frac{q_0\lambda Rd\phi}{(z^2+R^2)}\frac z{\sqrt{z^2+R^2}} \\ &=\frac1{4\pi\varepsilon_0}\frac{q_0\lambda Rz}{\left(z^2+R^2\right)^{3/2}}\int_0^{2\pi}d\phi \\ &=\frac1{4\pi\varepsilon_0}\frac{q_0qz}{\left(z^2+R^2\right)^{3/2}} \end{aligned}

for approximation

z,Fz14πε0q0qz2z\to \infty ,F_z\to \frac{1}{4\pi \varepsilon _0}\frac{q_0q}{z^2}
eg-disk

For a uniform disk of charge :

σ=qπR2dq=σdA=2πσωdωdFz=14πε0q0(2πσωdω)(z2+ω2)32Fz=14πε0q02πσz0Rωdω(z2+ω2)32=14πε02q0qR2(1zz2+R2)\begin{aligned} \sigma &=\frac{q}{\pi R^2}\\\mathrm d q&=\sigma \mathrm dA =2\pi \sigma \omega \mathrm d\omega\\\mathrm dF_z&=\frac{1}{4\pi \varepsilon _0}\frac{q_0(2\pi \sigma \omega \mathrm d\omega)}{(z^2+\omega ^2)^{\frac{3}{2}}}\\F_z&=\frac{1}{4\pi \varepsilon _0}q_02\pi \sigma z \int _{0}^R \frac{\omega \mathrm d\omega }{(z^2+\omega ^2)^{\frac{3}{2}}}\\&=\frac{1}{4\pi \varepsilon _0 }\frac{2q_0q}{R^2}\left(1-\frac{z}{\sqrt{z^2+R^2}}\right) \end{aligned}

for approximation

z,Fz14πε0q0qz2z\to \infty ,F_z\to \frac{1}{4\pi \varepsilon _0}\frac{q_0q}{z^2}

25-6 Charge conservation#

e++e2γnp+e+νee^++e^{-}\to 2\gamma\\n\to p+e^- +\nu_e

Chap. 26 Electric Fields#

26-1 Field#

  • scalar field
  • Vector field

Mass-field-mass: not action at a distance

26-2 E field#

E=limq00Fq0\vec E=\lim _{q_0\to 0}\frac{\vec F}{q_0}

26-3 The Electric field of point charge#

we just deal with electrostatics instead of electrodynamics

for a single charge qq

E=Fq0=14πε01r2r^\vec E=\frac{F}{q_0}=\frac{1}{4\pi \varepsilon _0}\frac{1}{r^2}\hat r

for the Electric Dipole (p=2Qa=Qlp=2Qa=Ql)

image-20241013135307542

remember p=ql\vec p=q\cdot\vec l,the direction is from q-q to +q+q

Ex(x,0)=0Ey(x,0)=214πε0Qr2sinθsinθ=ar,r=x2+a2Ey(x,0)=214πε0Qa(x2+a2)322kQar3E_x(x,0)=0\\E_y(x,0)=-2\frac{1}{4\pi \varepsilon _0}\frac{Q}{r^2}\sin \theta\\\sin \theta =\frac{a}{r},r=\sqrt{x^2+a^2}\\E_y(x,0)=-2\frac{1}{4\pi \varepsilon _0} \frac{Qa}{(x^2+a^2)^{\frac{3}{2}}}\to-2k\frac{Qa}{r^3}

then for y-axis

Ex(0,r)=0Ey(0,r)=Q4πε04arr4(1a2r2)2Ey(0,r)+414πε0Qar3=4kQar3E_x\left(0,r\right)=0\\E_y(0,r)=\frac{Q}{4\pi\varepsilon_0}\frac{4ar}{r^4\left(1-\frac{a^2}{r^2}\right)^2}\to E_y(0,r)\approx+4\frac1{4\pi\varepsilon_0}\frac{Qa}{r^3}=4k\frac{Qa}{r^3}
NaCl e.g.

2a=0.236nm,pt=2ea=1.6×3.78×10292a=0.236nm,p_t=2ea=1.6\times 3.78\times 10^{-29}

pe=3×1029p_e=3\times 10^{-29}(measured)

it indicates that the electron is not entirely removed from Na to Cl

for x>>ax>>a

we can approximate EE more precisely

E=pkx3[1+(32)(ax)2+]1r3E=\frac{pk}{x^3}[1+(-\frac{3}{2})(\frac{a}{x})^2+\cdots ]\propto \frac{1}{r^3}

26-4 The Electric field of Continuous Charge Distribution#

once again we turn to distribution densities:dq=λdx=σdA=ρdV\mathrm d q=\lambda d x=\sigma d A=\rho d V

image-20241013141019977

dEx=14πε0λdθrsinθdEy=+14πε0λdθrcosθdE_{x}=-\frac{1}{4\pi\varepsilon_{0}}\frac{\lambda d\theta}{r}\sin\theta\\dE_{y}=+\frac{1}{4\pi\varepsilon_{0}}\frac{\lambda d\theta}{r}\cos\theta

then

Ex=0,Ey=π2π2kλdθrcosθ=2kλr=λ2πε0r1rE_x=0,E_y=\int_{-{\frac{\pi}{2}}}^{\frac{\pi}{2}} k \frac{\lambda \mathrm d \theta}{r}\cos \theta =\frac{2k\lambda}{r}=\frac{\lambda}{2\pi \varepsilon _0 r}\propto \frac{1}{r}

image-20241013141723256

dE=λds4πε0r2=λds4πε0(z2+R2)dEz=dEcosθ=λds4πε0(z2+R2)z(z2+R2)1/2=zλds4πε0(z2+R2)3/2Ez=z4πε0(z2+R2)3202πRλdsq4πε0z2\begin{aligned} &dE=\frac{\lambda ds}{4\pi\varepsilon_{0}r^{2}}=\frac{\lambda ds}{4\pi\varepsilon_{0}(z^{2}+R^{2})} \\ &dE_{z}=dE\cos\theta \\ &=\frac{\lambda ds}{4\pi\varepsilon_{0}(z^{2}+R^{2})}\cdot\frac{z}{(z^{2}+R^{2})^{1/2}} \\ &=\frac{z\lambda ds}{4\pi\varepsilon_0(z^2+R^2)^{3/2}}\\E_z&=\frac{z}{4\pi \varepsilon _0(z^2+R^2)^{\frac{3}{2}}}\int _{0}^{2\pi R}\lambda \mathrm ds\to \frac{q}{4\pi \varepsilon _0z^2} \end{aligned}

image-20241013142455784

dq=2πωdωσdE=zdq4πε0(z2+ω2)3/2=z2πσωdω4πε0(z2+ω2)3/2E=dE=σz2ε00Rωdω(z2+ω2)3/2=σz4ε00Rd(z2+ω2)(z2+ω2)3/2=σ2ε0(111+R2z2)R>>z:Eσ2ε0z>>R:E=σ2ε0(12(Rz)238(Rz)4+)q4πε0z2\begin{aligned} &dq=2\pi\omega\cdot d\omega\cdot\sigma \\ &dE=\frac{zdq}{4\pi\varepsilon_{0}(z^{2}+\omega^{2})^{3/2}}=\frac{z2\pi\sigma\omega d\omega}{4\pi\varepsilon_{0}(z^{2}+\omega^{2})^{3/2}} \\ &E=\int dE=\frac{\sigma z}{2\varepsilon_{0}}\int_{0}^{R}\frac{\omega d\omega}{\left(z^{2}+\omega^{2}\right)^{3/2}} \\ &=\frac{\sigma z}{4\varepsilon_{0}}\int_{0}^{R}\frac{d(z^{2}+\omega^{2})}{(z^{2}+\omega^{2})^{3/2}} \\ &=\frac{\sigma}{2\varepsilon_{0}}(1-\frac{1}{\sqrt{1+\frac{R^{2}}{z^{2}}}})\\&R>>z:E\to \frac{\sigma }{2\varepsilon_0}\\&z>>R:E=\frac{\sigma }{2\varepsilon _0}\left(\frac{1}{2}\left(\frac{R}{z}\right)^2-\frac{3}{8}\left(\frac{R}{z}\right)^4+\cdots\right)\to \frac{q}{4\pi \varepsilon _0 z^2} \end{aligned}

Summary#

when r>>a/Rr>>a/R

  • Dipole p=2Qa=Qlp=2Qa=Ql

    • in line : E=4Qa4πε0r3=2p4πε0r3E=\frac{4Qa}{4\pi \varepsilon_0 r^3 }=\frac{2p}{4\pi \varepsilon _0r^3}
    • off line : E=2Qa4πε0r3=p4πε0r3E=\frac{2Qa}{4\pi \varepsilon _0r^3}=\frac{p}{4\pi \varepsilon _0r^3}
  • Point E=q4πε0r2E=\frac{q}{4\pi \varepsilon_0 r^2 }

  • Line E=2λ4πϵ0rE=\frac{2\lambda }{4\pi \epsilon_0 r}

  • Ring E=q4πε0z2E=\frac{q}{4\pi \varepsilon _0z^2}

  • Disk E=q4πε0z2E=\frac{q}{4\pi \varepsilon _0z^2}

26-5 E-Field Lines#

{Ex=ErsinθcosϕEy=ErsinθsinϕEz=Ercosθ\begin{cases}E_x=E_r\sin\theta\cos\phi\\E_y=E_r\sin\theta\sin\phi\\E_z=E_r\cos\theta\end{cases}

26-6 Point Charge in E-field#

deflecting electrode system of an ink-jet printer
An ink drop:m=1.3×1010kgL=1.6cmq=1.5×l013C,E=1.4×106N/Cv=18m/s\begin{aligned}\text{An ink drop}&:m=1.3\times 10^{-10}kg\quad L=1.6cm\\&q=-1.5\times l0^{-13}C,\quad E=1.4\times 10^6N/C\\&v=18m/s\end{aligned}y=12qEmL2v20.64mmy=\frac{1}{2}\frac{qE}{m}\frac{L^2}{v^2}\approx 0.64mm

one letter -> about 100 drops

100000 drops/s 1000\to 1000 letters/s

bonusthe elementary charge e=1.602×1019Ce=1.602\times 10^{-19}C

skip

then in an ununiformed field,for example

F=qEconstF(z)d2zdt2=qmE(z)E=Qz4πε0(z2+R2)3/2d2zdt2=qmQz4πε0(z2+R2)3/2\begin{aligned} &F=qE\neq const\quad F(z) \\ &\frac{d^{2}z}{dt^{2}}=\frac{q}{m}E(z) \\ &E=\frac{\mathrm{Q}z}{4\pi\varepsilon_{0}(z^{2}+R^{2})^{3/2}} \\ &\frac{d^{2}z}{dt^{2}}=\frac{q}{m}\frac{Qz}{4\pi\varepsilon_{0}(z^{2}+R^{2})^{3/2}} \end{aligned}

26-7 Dipole in E-field#

image-20241013144629047

  • Torque:τ=pEsinθ=p×E\vec \tau=pE\sin \theta=\vec p\times \vec E
  • W=θ0θ=pE(cosθcosθ0)=ΔU,U(θ)=pEW=\int _{\theta_0}^\theta =pE(\cos \theta -\cos \theta_0)=-\Delta U,U(\theta)=-\vec p\cdot \vec E

we can divide molecules to

  • Dipole-molecule H2O\mathrm{H_2O}
  • non-dipole molecule C2O\mathrm{C_2O}
the max torque on H2O
τ=qEsinθ=9.3×1026Nmθ:π0:W=2pE=1.9×1025Jϵint=3kT26.3×1021>>ϵelect\tau =qE\sin \theta =9.3\times 10^{-26}N\cdot m\\ \\ \theta :\pi\to 0 :W=2pE=1.9\times 10^{-25}J\\ \epsilon _{int}=\frac{3kT}{2}-6.3\times 10^{-21}>>\epsilon _{elect}

26-8 Atom Nuclear Model#

  • Thomson model plum pudding

Rutherford:

Emax=Q4πε0R2=1.2×1013N/CR=1.0×1010mQ=79eU=6Mev=9.6×1013Jν=2Um=1.7×107m/s\begin{aligned} &E_{\max}=\frac{Q}{4\pi\varepsilon_{0}R^{2}}=1.2\times10^{13}N/C \\ &R=1.0\times10^{-10}m \\ &Q=79e \\ &U=6\mathrm{Mev}=9.6\times10^{-13}J \\ &\nu=\sqrt{\frac{2U}{m}}=1.7\times10^{7}m/s \end{aligned} F=qEmax=maa=qmEmaxΔν=aΔt=qmEmax2Rν=6.6×103m/sθ=tg1Δνν=tg1(6.6×1031.7×107)0.02\begin{aligned} &F=qE_{\max}=ma \\ &a=\frac{q}{m}E_{\max} \\ &\Delta\nu=a\Delta t=\frac{q}{m}E_{\max}\frac{2R}{\nu}=6.6\times10^{3}m/s \\ &\therefore\theta=tg^{-1}\frac{\Delta\nu}{\nu}=tg^{-1}(\frac{6.6\times10^{3}}{1.7\times10^{7}})\approx0.02 \end{aligned}

then , the result disobeys the experimental result!

Chap. 27 Gauss Law#

27-2(3) Flux#

We need to at first define flux and the vector of surface of a closed region.

Φ=νdAdΦ=νdAdA=dydzi+dzdxj+dxdykν=νxi+νyj+νzkνdA=νxdydz+νydzdx+νzdxdy\begin{aligned} &\Phi=\oint\vec{\nu}\bullet d\vec{A} \\ &d\Phi=\vec{\nu}\bullet d\vec{A} \\ &d\vec{A}=dydz\vec{i}+dzdx\vec{j}+dxdy\vec{k} \\ &\vec{\nu}=\nu_{x}\vec{i}+\nu_{y}\vec{j}+\nu_{z}\vec{k} \\ &\vec{\nu}•d\vec{A}=\nu_{x}dydz+\nu_{y}dzdx+\nu_{z}dxdy \end{aligned}

if no source or sink of fluid

Φ=νdA=0\Phi=\oint \vec \nu \cdot \mathrm d\vec A=0

for electrostatic case

Φ=EdA=qenclosedε0\Phi=\oint\vec{E}\bullet \mathrm d\vec{A}=\frac{q_{enclosed}}{\varepsilon _0}

Geometry and Surface Integrals#

we can illustrate that Gauss’s Law -> Coulomb’s Law

for a +Q sphere having radius RR

E4πR2=Qε0E \cdot 4\pi R^2=\frac{Q}{\varepsilon _0}

27-5(6) Application Gauss’s Law#

Uniform charged sphere
q=43πa3ρE=ρa33ε0r2(r>a)E=ρr3ε0(r<a)q=\frac{4}{3}\pi a^3\rho\Rightarrow E=\frac{\rho a^3}{3\varepsilon _0r^2}(r>a)\\E=\frac{\rho r}{3\varepsilon _0}(r<a)

Conductors——Spherical Symmetry#

since E=0 inside a conductor Qinside=0Q_{inside}=0, charges are only on the surface

For a conductor,we obtain a cylinder gauss plane:

ε0EΔA+0+0=σΔAE=σε0\varepsilon_0E\Delta A+0+0=\sigma \Delta A\\E=\frac{\sigma}{\varepsilon _0}

Line——Cylindrical Symmetry#

E2πrhε0=λhE=λ2πε0rE \cdot 2\pi r h\cdot \varepsilon_0=\lambda h\to E=\frac{ \lambda }{2\pi \varepsilon _0 r}
Chap27,ACT2

Aline charge λ(C/m)\lambda\left(\text{C/m}\right) is placed along the axis of an uncharged conducting cylinder of inner radius ri=ar_i=a, and outer radius ro=br_o=b as shown.

we need to get σo\sigma_o

TIPEo=λ2πε0r=σ0bε0rσo=λ2πbE_o=\frac{\lambda }{2\pi \varepsilon _0 r}=\frac{\sigma_0b}{\varepsilon _0 r}\Rightarrow \sigma_o=\frac{\lambda}{2\pi b}

Sheets——Planar Symmetry#

ε0(2EA)=σAE=σ2ε0\varepsilon _0(2EA)=\sigma A \Rightarrow E=\frac{\sigma}{2\varepsilon _0}

for two paralleled sheets

Ein=σε0E_{in}=\frac{\sigma}{\varepsilon _0}

image-20241013155219398

EA=σ12ε0EB=+σ12ε0EC=0ED=+σ12ε0E_A=\frac{-\sigma_1}{2\varepsilon _0}\\E_B=\frac{+\sigma_1}{2\varepsilon _0}\\E_C=0\\E_D=\frac{+\sigma_1}{2\varepsilon _0}

always based on gauss plane

image-20241013160823665

Q2=3Q1Q_2=-3Q_1 σi=Q14πR22σo=2Q14πR22E={0r<R114πε0Q1r2R1<r<R214πε02Q1r2r>R2\sigma _i=-\frac{Q_1}{4\pi R_2^2}\\\sigma _o=-\frac{2Q_1}{4\pi R_2^2}\\E=\begin{cases}0&r<R_1\\\frac{1}{4\pi \varepsilon_0 }\frac{Q_1}{r^2} &R_1<r<R_2\\-\frac{1}{4\pi \varepsilon _0 }\frac{2Q_1}{r^2}&r>R_2\end{cases}

Once we connect the two spheres with a wire:,it becomes a whole conductor with 2Q1-2Q_1

eg2 Cylinders

image-20241013162838562

σi=λ2πR,σo=σt+λ2πR\sigma _i =-\frac{\lambda }{2\pi R},\sigma _o = \sigma_t+\frac{\lambda }{2\pi R}Er={λ2πε0rr<Rλ2πε0,r+σRε0rr>RE_r=\begin{cases}\frac{\lambda }{2\pi \varepsilon _0 r}&r<R\\\frac{\lambda }{2\pi \varepsilon _0,r}+\frac{\sigma R}{\varepsilon _0r} &r>R\end{cases}

27-7 Experimental Tests of Gauss’ Law and Coulomb’s Law#

WARNING

just skip

Chap. 28 Electric Potential U & V#

28-1 Potential Energy#

image-20241013164129339

The union energy of two points of charge :

UbUa=Wa,b=abFdlU_b-U_a=-W_{a,b}=-\int_{a}^b \vec F\cdot \mathrm d\vec l

The circuit Law of electrostatics field#

Edl=0×E=0\oint \vec E\cdot \mathrm d\vec l =0\\\nabla \times \vec E=0

The gauss’ law(the same as Math Analysis):

EdA=qε0=ρε0dV\oint \vec E\cdot\mathrm d \vec A =\frac{q}{\varepsilon _0}=\iiint \frac{\rho}{\varepsilon_0} \mathrm d V

28-2 Electric Potential#

Vp=Upq0V_p=\frac{U_p}{q_0} VBVAWABq0=ABEdlV_B-V_A\equiv \frac{W_{AB}}{q_0}=-\int _{A}^B \vec E\cdot \mathrm d \vec l

28-3 Calculate Potential from E#

Wab=abEdlVp=Wp=pEdlW_{ab}=-\int _{a}^b \vec E \cdot \mathrm d \vec l\\V_p=W_{\infty p}=-\int_{\infty}^{p} \vec E\cdot \mathrm d \vec l

for a point charge:

VbVa=rarbq4πε0r2dr=q4πε0(1rb1ra)V_b-V_a=-\int _{r_a}^{r_b}\frac{q}{4\pi \varepsilon _0r^2}\mathrm dr=\frac{q}{4\pi \varepsilon _0}\left(\frac{1}{r_b}-\frac{1}{r_a}\right)
Dipole

image-20241013170530297

r>>aVr=14πε0r2r1r1r2r2r12acosθ,r1r2=r2Vr=14πε02aqcosθr2=pr^4πε0r2r>>a\\V_r=\frac{1}{4\pi \varepsilon _0}\frac{r_2-r_1}{r_1r_2}\\ r_2-r_1\approx 2a\cos \theta ,r_1r_2=r^2\\ V_r=\frac{1}{4\pi \varepsilon_0}\frac{2aq\cos \theta }{r^2}=\frac{\vec p\cdot \hat r}{4\pi \varepsilon_0 r^2}
quadrupole

image-20241013171208250

V(r)=iVi(ri)=14πε0(qrd+2qr+qr+d)=14πε02qd2r(r2d2)=14πε02qd2r3(1d2/r2)Q4πε0r3(d<<r)\begin{aligned} &V(r)=\sum_{i}V_{i}(r_{i}) \\ &=\frac{1}{4\pi\varepsilon_{0}}(\frac{q}{r-d}+\frac{-2q}{r}+\frac{q}{r+d}) \\ &=\frac{1}{4\pi\varepsilon_{0}}\frac{2qd^{2}}{r(r^{2}-d^{2})} \\ &=\frac{1}{4\pi\varepsilon_{0}}\frac{2qd^{2}}{r^{3}(1-d^{2}/r^{2})}\to \frac{Q}{4\pi \varepsilon _0r^3}(d<<r) \end{aligned}
  • Point charge 1r\propto \frac{1}{r}
  • Dipole 1r2\propto \frac{1}{r^2}
  • Quadrupole 1r3\propto \frac{1}{r^3}

we can trace back to the distribution reflected by n-dipoles.

:::[egs for potential calculation]

for a charged sphere shell

E=[rR]q4πε0r2E=[r\geqslant R]\cdot \frac{q}{4\pi \varepsilon _0r^2} V(P)=q4πε0max{rP,R}V(P)=\frac{q}{4\pi \varepsilon _0\max \{r_P,R\}} U=12Vdq=q28πε0RU=\frac{1}{2} \int V\mathrm d q=\frac{q^2}{8\pi \varepsilon _0 R} W=mc2=e28πε0RRe1.4×1015mW=mc^2=\frac{e^2}{8\pi \varepsilon _0R}\Rightarrow R_e\approx 1.4\times 10^{-15}m

for a ring

V=14πε0λdsz2+R2=q4πε0z2+R2V=\oint \frac{1}{4\pi \varepsilon _0}\frac{\lambda \mathrm d s}{\sqrt{z^2+R^2}}=\frac{q}{4\pi \varepsilon _0 \sqrt{z^2+R^2}}

for a disk

dq=2πωdωσdV=2πωdωσ4πε0z2+ω2V=0R2πωdωσ4πε0z2+ω2=σ2ε0(z2+R2z)q4πε0z\begin{aligned} &dq=2\pi\omega\cdot d\omega\cdot\sigma \\ &dV=\frac{2\pi\omega\cdot d\omega\cdot\sigma}{4\pi\varepsilon_{0}\sqrt{z^{2}+\omega^{2}}} \\ &V=\int_{0}^{R}\frac{2\pi\omega\cdot d\omega\cdot\sigma}{4\pi\varepsilon_{0}\sqrt{z^{2}+\omega^{2}}}=\frac{\sigma}{2\varepsilon_{0}}(\sqrt{z^{2}+R^{2}}-z)\to \frac{q}{4\pi \varepsilon _0 z} \end{aligned}

:::

Sparks#

High electric fields can ionize nonconducting materials(dielectrics)

(Insulator->Conductor)

ball breakdown

we have two ball shell with same potential VV

Ball 2 is as twice large as Ball 1

as VV goes up, the Ball 1 will breakdown first

Es=Q4πε0r2,V=Q4πε0rE=VrE_s=\frac{Q}{4\pi \varepsilon _0 r^2},V=\frac{Q}{4\pi \varepsilon_0 r}\Rightarrow E=\frac{V}{r}

then r1<r2E1>E2r_1<r_2\Rightarrow E_1>E_2

image-20241015101813495

  • ΔV>0\Delta V>0 means we go uphill
  • ΔV<0\Delta V<0 means we go downhill
V(r)=VcEllcbEllbaEllarEll=V(c+ba)14πε0Qr2drar14πε0Qra3dr=Q4πε0(1a(1b1c)+12a(1r2a2))V(r)=V_\infty -\int_{\infty}^c \vec E_l\cdot \vec l-\int_{c}^b \vec E_l\cdot \vec l-\int_{b}^a \vec E_l\cdot \vec l-\int_{a}^r \vec E_l\cdot \vec l\\=V_\infty-\left(\int _{\infty}^c+\int_{b}^{a}\right )\frac{1}{4\pi \varepsilon _0}\frac{Q}{r^2}\mathrm dr-\int_{a}^r \frac{1}{4\pi\varepsilon _0}\frac{Qr}{a^3}\mathrm dr\\=\frac{Q}{4\pi \varepsilon _0}\left(\frac{1}{a}-\left(\frac{1}{b}-\frac{1}{c}\right)+\frac{1}{2a}\left(1-\frac{r^2}{a^2}\right)\right)

you can split into two patterns

28-4 Equipotentials#

when in the equipotential surface we can conclude

EdlV\vec E\cdot \mathrm d\vec l\equiv V

28-5 Potential of a charged conductors#

IMPORTANT

Claim: The surface of a conductor is an equipotential surfacewhen two sphere conductors are attatched to each others.

QAQB=rArB\frac{Q_A}{Q_B}=\frac{r_A}{r_B}

for example , when a point of charge is placed off-center inside a sphere conductor,the inside surface will be inuniform and the outside surface will be uniform

28-6 Calculate E from Potential#

VP=PEdlV_P=\int _{P}^{\infty }\vec E\cdot \mathrm d \vec l
  • Graphically the E-field line is the fastest-descending line of equipotential surfaces

  • Math:

    from dW=q0dV\mathrm d W=-q_0 \mathrm d V

    dW=Fdl=q0Fdl=q0EdlcosθEcosθ=dVdl\mathrm d W=\vec F\cdot \mathrm d\vec l=q_0\vec F\cdot \mathrm d \vec l=q_0E\mathrm d l\cos \theta\\E\cos \theta =-\frac{\mathrm d V}{\mathrm dl} El=dVdlE=VE_l=-\frac{\mathrm d V}{\mathrm d l}\Rightarrow \vec E=-\nabla V
    • Cartesian coordinates:

      V=Vxxˉ+Vyyˉ+Vzzˉ\nabla V=\frac{\partial V}{\partial x}\bar x+\frac{\partial V}{\partial y}\bar y+\frac{\partial V}{\partial z}\bar z
    • Spherical coordinates:

      V=Vrxˉ+1rVθyˉ+1rsinφVφφˉ\nabla V=\frac{\partial V}{\partial r}\bar x+\frac{1}{r}\frac{\partial V}{\partial \theta}\bar y+\frac{1}{r\sin \varphi}\frac{\partial V}{\partial \varphi}\bar \varphi
      review
      x=rsinθcosϕy=rsinθsinϕz=rcosθ\begin{align*} x & = r \sin \theta \cos \phi \\ y & = r \sin \theta \sin \phi \\ z & = r \cos \theta \end{align*}r=x2+y2+z2θ=arccoszx2+y2+z2=arccoszr={arctanx2+y2zif z>0π+arctanx2+y2zif z<0+π2if z=0 and x2+y20undefinedif x=y=z=0φ=sgn(y)arccosxx2+y2={arctan(8x)if x>0,arctan(9x)+πif x<0 and y0,+π2if x<0 and y>0,π2if x=0 and y>0,undefinedif x=0 and y=0.r=\sqrt{x^2+y^2+z^2}\\\theta=\arccos\frac z{\sqrt{x^2+y^2+z^2}}=\arccos\frac zr=\begin{cases}\arctan\frac{\sqrt{x^2+y^2}}z&\mathrm{if~}z>0\\\\\pi+\arctan\frac{\sqrt{x^2+y^2}}z&\mathrm{if~}z<0\\\\+\frac\pi2&\mathrm{if~}z=0\mathrm{~and~}\sqrt{x^2+y^2}\neq0\\\mathrm{undefined}&\mathrm{if~}x=y=z=0&\end{cases}\\\varphi=\mathrm{sgn}(y)\arccos\frac x{\sqrt{x^2+y^2}}=\begin{cases}\arctan(\frac8x)&\mathrm{if~}x>0,\\\arctan(\frac9x)+\pi&\mathrm{if~}x<0\mathrm{~and~}y\geq0,\\+\frac\pi2&\mathrm{if~}x<0\mathrm{~and~}y>0,\\-\frac\pi2&\mathrm{if~}x=0\mathrm{~and~}y>0,\\\mathrm{undefined}&\mathrm{if~}x=0\mathrm{~and~}y=0.&\end{cases}
eg
V=3x2+2xyz2E=(6x2y,2x,2z)TE=2aq4πε0r3(2cosθ,sinθ,0)spT\begin{align*} V=3x^2+2xy-z^2 \\ \vec E=(-6x-2y,-2x,2z)^T\\ \vec E=\frac{2aq}{4\pi \varepsilon _0r^3}(2\cos \theta ,\sin \theta ,0)_{sp}^T \end{align*}

then we have two eg

dipole

image-20241015114126009

V(r)=q4πε0r2r1r1r214πε02aqcosθr2(r>>a)V(r)=\frac{q}{4\pi \varepsilon _0}\frac{r_2-r_1}{r_1r_2}\to \frac{1}{4\pi \varepsilon _0}\frac{2aq\cos \theta}{r^2}(r>>a)

then

V(r,θ)=14πε02aqcosθr2Er=VrEθ=VθE=2aq4πε0r3((2cosθ)r^+sinθθ^)V(r,\theta)=\frac{1}{4\pi \varepsilon _0}\frac{2aq\cos \theta}{r^2}\\E_r=-\frac{\partial V}{\partial r}\\E_\theta=-\frac{\partial V}{\partial \theta}\\\Rightarrow \vec E=\frac{2aq}{4\pi \varepsilon _0 r^3}((2\cos \theta )\hat r+\sin \theta \hat \theta)

image-20241015114612342

it’s easy to see that argmaxθE=π2\arg \max_{\theta } ||\vec E||=\frac{\pi}{2}

eg. disk

image-20241015114925818

dq=2πωdωσdV=dq4πε0z2+ω2=2πωdωσ4πε0z2+ω2V=0R2πωdωσ4πε0z2+ω2=σ2ε0(z2+R2z)Ez=Vz=σ2ε0(2z2R2+z21)=σ2ε0(111+(R/z)2)\begin{aligned} &dq=2\pi\omega\cdot d\omega\cdot\sigma \\ &dV=\frac{dq}{4\pi\varepsilon_{0}\sqrt{z^{2}+\omega^{2}}}=\frac{2\pi\omega\cdot d\omega\cdot\sigma}{4\pi\varepsilon_{0}\sqrt{z^{2}+\omega^{2}}} \\ &V=\int_{0}^{R}\frac{2\pi\omega\cdot d\omega\cdot\sigma}{4\pi\varepsilon_{0}\sqrt{z^{2}+\omega^{2}}}=\frac{\sigma}{2\varepsilon_{0}}\big(\sqrt{z^{2}+R^{2}}-z\big) \\ &E_{z}=-\frac{\partial V}{\partial z}=-\frac{\sigma}{2\varepsilon_{0}}(\frac{2z}{2\sqrt{R^{2}+z^{2}}}-1) \\ &=\frac{\sigma}{2\varepsilon_{0}}(1-\frac{1}{\sqrt{1+(R/z)^{2}}}) \end{aligned}
a e.g for getting vv with ΔU\Delta U
12mv2=K=ΔU=qΔVv=2qΔVm\frac{1}{2}mv^2=K=-\Delta U=-q\Delta V\Rightarrow v=\sqrt{\frac{2q\Delta V}{m}}

we can measure α\alpha partical’s large velocity by measuring eletrostatic information like difference of potential

Appendix method of images#

image-20241015120204563

we can see

E(rs)=σ(rs)ε0E(\vec r_s)=\frac{\sigma(\vec r_s)}{\varepsilon _0}

we can see that the induced charge distribution generated with a point of charge and a conductor sheet is the same as which is made by two charges. It can be proved with symmetry theorem.

Chap. 30 Capacitance and Dielectrics#

30-1 Capacitors#

Classic Capacitors#

Application
  • flashbulbdraw energy from battery (ss) then release it through bulb(msms)
  • Laser pulse
  • thermonuclear fusion 1014W,109s,108K10^{14}W,10^{-9}s,10^8K

Definition of Capacitance : two spatially seperated conductors(+q/q+q/-q) C=qΔVC=\frac{q}{\Delta V}

IMPORTANT

one single conductor is capacitor!

egPlate capacitor
q=σAΔV=ABEdlq=\sigma A\\\Delta V=-\int _{A}^B \vec E\cdot \mathrm{d}\vec l
egPlate capacitor
q=σAΔV=ABEdlq=\sigma A\\\Delta V=-\int _{A}^B \vec E\cdot \mathrm{d}\vec l

since

EAε0=σAE=σε0ΔV=qAε0dC=ε0AdEA\varepsilon _0= \sigma A\Rightarrow E=\frac{\sigma}{\varepsilon _0}\Rightarrow \Delta V=\frac{q}{A\varepsilon_0}d\Rightarrow C=\frac{\varepsilon _0 A}{d}
Application
  • condenser:C1dfixed ΔVQ1d,I=dQdtC \propto \frac{1}{d}\xrightarrow{\mathrm{fixed~}\Delta V} Q\propto\frac{1}{d},I=\frac{\mathrm{d} Q}{\mathrm d t}vibration -> different II
egCapacitor

image-20241018170156213

+Q,Q+Q,-Q on surface,ΔV\Delta V

2πrLEε0=QE=Q2πε0Lr2\pi r \cdot L\cdot E\cdot \varepsilon_0=Q\Rightarrow E=\frac{Q}{2\pi \varepsilon _0 Lr}ΔV=baEdl=Q2πεLlnba,C=2πε0Llnba\Delta V=\int_{b}^a \vec E\cdot \mathrm d\vec l =\frac{Q}{2\pi \varepsilon L\ln \frac{b}{a}},C=\frac{2\pi \varepsilon _0 L}{\ln\frac{b}{a}}
exsignals tansmit/coaxial cable

a=ri=0.15,b=ro=2.1a=r_i=0.15,b=r_o=2.1

CL=2πε0ln(b/a)=2π×8.85×1012ln(2.1/0.15)=21×1012F/m=21pF/m\frac{C}{L}=\frac{2\pi\varepsilon_{0}}{\ln(b/a)}=\frac{2\pi\times8.85\times10^{-12}}{\ln(2.1/0.15)}=21\times10^{-12}F / m=21 pF / m
egcapacitor

image-20241018170915119

E=qr^4πε0r2ΔV=q4πε0(1a1b)C=4πε0abba\vec E=\frac{q\hat r}{4\pi \varepsilon _0 r^2}\Rightarrow \Delta V=\frac{q}{4\pi \varepsilon_0 }\left(\frac{1}{a}-\frac{1}{b}\right)\Rightarrow C=\frac{4\pi \varepsilon _0ab}{b-a}

for earth R=6.37×106mC=7.1×104F=710μFR=6.37\times 10^6 m\Rightarrow C=7.1\times 10^{-4}\mathrm F=710\mu \mathrm F

Summary#

  • Parallel Plate:C=ε0AdC=\frac{\varepsilon _0 A}{d}
  • Cylindrical Capacitor:C=2πε0LlnbaC=\frac{2\pi \varepsilon _0 L}{\ln\frac{b}{a}}
  • Spherical C=4πε0abbaC=4\pi \varepsilon_0\frac{ab}{b-a}

Parallel & Series#

image-20241018171312744

image-20241018171326385

for capacitors in parallel

V=Q1C1=Q2C2Q2=Q1C2C1C=C1+C2V=\frac{Q_1}{C_1}=\frac{Q_2}{C_2}\Rightarrow Q_2=Q_1\frac{C_2}{C_1}\\C=C_1+C_2

for capacitors in series

Vab=QC=QC1+QC2C=(1C1+1C2)1V_{ab}=\frac{Q}{C}=\frac{Q}{C_1}+\frac{Q}{C_2}\Rightarrow C=\left(\frac{1}{C_1}+\frac{1}{C_2}\right)^{-1}

image-20241018171611735

1C=1C3+1C1+C2\frac{1}{C}=\frac{1}{C_3}+\frac{1}{C_1+C_2}

image-20241018171919786

C=2πε0LlnbalndcC=\frac{2\pi \varepsilon _0L}{\ln\frac{b}{a}\ln \frac{d}{c}}

30-2 Energy storage in E-field#

for paralleled capacitor

dW=V(q)dq=qdqCW=0QqdqC=12Q2C=CV22=12CV2\mathrm d W=V(q)\mathrm d q=\frac{q\mathrm d q}{C}\\ W=\int _{0}^ Q \frac{q\mathrm dq}{C}=\frac{1}{2}\frac{Q^2}{C}=\frac{CV^2}{2}\Rightarrow =\frac{1}{2}CV^2

in some questions ,we need to verify the fact whether QQ is const or VV is const.

U=12QC2=12Q2Aε0/dE=σε0=Qε0AU=12E2ε0AdU=\frac{1}{2}\frac{Q}{C^2}=\frac{1}{2}\frac{Q^2}{A\varepsilon _0/d}\Rightarrow E=\frac{\sigma}{\varepsilon_0}=\frac{Q}{\varepsilon _0 A}\\\Rightarrow U=\frac{1}{2}E^2\varepsilon _0 A d

the energy density u=WAd=12ε0E2(Jm3)u=\frac{W}{Ad}=\frac{1}{2}\varepsilon _0 E^2(J\cdot m^{-3})

you can calculate with uu with Cylindrical Capacitor

U=ab12ε0E2=ε02(λ2πε0r)2L2πrdr=12Q22πε0Llnba=12Q2CU=\int_{a}^b \frac{1}{2}\varepsilon _0 E^2=\frac{\varepsilon _0}{2}\int \left(\frac{\lambda }{2\pi \varepsilon _0 r} \right)^2L2\pi r \mathrm d r=\frac{1}{2}\frac{Q^2}{2\pi \varepsilon _0 L}\ln \frac{b}{a}=\frac{1}{2}\frac{Q^2}{C}
ACT2 cylindrical capacitors

with two cylindrical capacitors ((a,b) vs (2a,2b)(a,b)~\mathrm{vs}~(2a,2b))

C=2πεoLln(routerrinner)C=\frac{2\pi\varepsilon_oL}{\ln\left(\frac{r_{outer}}{r_{inner}}\right)}

so C1=C2C_1=C_2

::: note[P687 30-7]

Problem 30- 7 ( page 687) . \textbf{Problem 30- 7 ( page 687) . }An isolated conducting sphere whose radius RR is 6.85cm carries a charge q=1.25nC.(q=1.25nC.(a) How much energy is stored in the electric field of this charged conductor? (b) What is the energy density (能量密度) at the surface of the sphere? (c)What is the radius RϑR_{\vartheta} of the imaginary spherical surface such that one-half of the stored potential energy lies within it?

R=6.85cm, q=1.25nC

(a)U=?

(b)u=? (at the surface of the sphere)

(c)R0=? R_0=?~At R<R0,U=12UR<R_0,U'=\frac{1}{2} U

(a)

C=4πε0RU=q22C=q28πε0R=1.03×107J=103nJ\begin{aligned}&C=4\pi\boldsymbol{\varepsilon}_0R\\&U=\frac{q^2}{2C}=\frac{q^2}{8\pi\boldsymbol{\varepsilon}_0R}=1.03\times10^{-7}J=103nJ\end{aligned}

(b)

E=q4πε0R2u=12ε0E2=12ε0q216π2ε02R4=q232π2ε02R4=25.4nJ/cm3\begin{aligned}&E=\frac q{4\pi\varepsilon_0R^2}\\&u=\frac12\varepsilon_0E^2=\frac12\varepsilon_0\frac{q^2}{16\pi^2\varepsilon_0^2R^4}=\frac{q^2}{32\pi^2\varepsilon_0^2R^4}=25.4nJ/cm^3\end{aligned}

(c)

RR012ε0E2dν=R012ε0E2dνRR012ε0q216π2ε02r44πr2dr=R012ε0q216π2ε02r44πr2drRR0drr2=R0drr21R1R0=1R0R0=2R=13.7cm\begin{aligned} &\int_R^{R_0}\frac12\varepsilon_0E^2d\nu=\int_{R_0}^\infty\frac12\varepsilon_0E^2d\nu \\ &\int_R^{R_0}\frac{1}{2}\varepsilon_0\frac{q^2}{16\pi^2\varepsilon_0^2r^4}4\pi r^2dr=\int_{R_0}^\infty\frac{1}{2}\varepsilon_0\frac{q^2}{16\pi^2\varepsilon_0^2r^4}4\pi r^2dr \\ &\int_R^{R_0}\frac{dr}{r^2}=\int_{R_0}^\infty\frac{dr}{r^2} \\ &\frac1R-\frac1{R_0}=\frac1{R_0} \\ &R_0=2R=13.7cm \end{aligned}

30-3 Dielectrics#

Capacitor with dielectrics#

definition
  • Empirical observation: Inserting a non-conducting material between the plates of a capacitor changes the VALUE of the capacitance.
  • dielectric constant C=κeC0C=\kappa _e C_0,κe>1\kappa_e>1(glass=5.6,water=78)
  • C0C_0 means the capacitance with vacuum (air)

with dielectric constant κe\kappa _e and const QQ

V=QC=V0κeE=E0κeV=\frac{Q}{C}=\frac{V_0}{\kappa_e}\Rightarrow E= \frac{E_0}{\kappa_e}

with const VV

Q=κeC0VQ'=\kappa _e C_0V

  • parallel-plate :C=κeε0AdC=\frac{\kappa_e \varepsilon _0 A}{d}
  • cylindrical C=κe2πε0LlnbaC=\frac{\kappa_e 2\pi \varepsilon _0 L}{\ln \frac {b}{a}}
  • spherical C=4πε0κeabbaC=4\pi \varepsilon _0\kappa_e\frac{ab}{b-a}

for point charge E=Q4πε0κer2\displaystyle E=\frac{Q}{4\pi \varepsilon _0\kappa_e r^2}

the increasing CC
C=C1C2C1+C2=ε0Ad1+d2>ε0Ad(d>d1+d2))C=\frac{C_1C_2}{C_1+C_2}=\frac{\varepsilon _0 A }{d_1+d_2}>\frac{\varepsilon _0 A}{d}(d>d_1+d_2))

Polarization effect :

V=Ed=(E0E)d<E0dC=q(E0E)d>C0V=Ed=(E_0-E')d<E_0d\\C=\frac{q}{(E_0-E')d}>C_0

microscopic mechanism of polarization#

  • Non-polar dielectrics p=qd=0\vec p=q\vec d=0
  • Polar dielectrics p=qd0\vec p=q\vec d\neq 0

for non-polar dielectrics

we have

Induced electric dipole moment

Electric displacement polarization

image-20241020222558545

Polar dielectrics

p0\sum \vec p\neq 0

Alignment polarization

TIP

In high frequency field , Electric displacement polarization plays an important role

Polarization#

Polarization intensity P\vec P

P=pmΔV(Cm2)=nql\vec P=\cfrac{\sum \vec p_m}{\Delta V} (C\cdot m^{-2})=nq \vec l

image-20241020222921535

dN=ndV=nldAcosθdq=qdN=nqldAcosθ=PdAcosθ=PdAPdA=outq=inqdq=PdA=PcosθdAσ=dqdA=Pcosθ=Pn=Pn\begin{aligned} &dN=ndV=nldA\cos\theta \\ &dq'=qdN=nqldA\cos\theta \\ &=PdA\cos\theta \\ &=\vec{P}\bullet d\vec{A} \\ &\oint\vec{P}\bullet d\vec{A}=\sum_{out}q'=-\sum_{in}q'\\ &dq'=\vec{P}\bullet d\vec{A}=P\cos\theta\cdot dA\\&\sigma'=\frac{dq'}{dA}=P\cos\theta=\vec{P}\bullet\vec{n}=P_n \end{aligned}

Depolarization Field#

E=E0+E\vec E=\vec E_0+\vec E'

image-20241020223121085

σe=Pn=PcosθdE=dq4πε0R2=σedA4πε0R2=PcosθdA4πε0R2dA=RdθRsinθdφ=R2sinθdθdφdE=P4πε0cosθsinθdθdφdEz=dEcos(πθ)=dEcosθ=P4πε0cos2θsinθdθdφEz=zdEz=P4πε00πcos2θsinθdθ02πdφ=P3ε0\begin{aligned} &\sigma_e^{\prime}=P_n=P\cos\theta \\ &dE^{\prime}=\frac{dq^{\prime}}{4\pi\varepsilon_0R^2}=\frac{\sigma_e^{\prime}dA}{4\pi\varepsilon_0R^2}=\frac{P\cos\theta dA}{4\pi\varepsilon_0R^2} \\ &dA=Rd\theta\cdot R\sin\theta d\varphi \\ &=R^{2}\sin\theta d\theta d\varphi \\ &dE'=\frac P{4\pi\varepsilon_0}\cos\theta\sin\theta d\theta d\varphi \\ &dE'_z=dE'\cos(\pi-\theta)=-dE'\cos\theta \\ &=-\frac P{4\pi\varepsilon_0}\cos^2\theta\sin\theta d\theta d\varphi \\ &E_z^{\prime}=\oint_zdE_z^{\prime}=-\frac P{4\pi\varepsilon_0}\int_0^\pi\cos^2\theta\sin\theta d\theta\int_0^{2\pi}d\varphi=-\frac P{3\varepsilon_0} \end{aligned}
eg2 parallel plate
σe=Pcosθ=PE=σeε0\sigma_e'=P\cos \theta =P\\ E'=\frac{\sigma_e'}{\varepsilon_0}

Polarization law#

PσeEE[P(E)]\vec P\Rightarrow \sigma_e'\Rightarrow \vec E'\Rightarrow \vec E[\vec P(\vec E)]

for general isotropic materials

P=χeε0E(κe=1+χe)\vec{P}=\chi_e\varepsilon_0\vec{E}(\kappa _e=1+\chi_e)

χe\chi _e: Polarization coefficient

for crystal materials:

(PxPyPz)=(χxxχxyχxzχyxχyyχyzχzxχzyχzz)(ε0Exε0Eyε0Ez)\begin{pmatrix}P_x\\P_y\\P_z\end{pmatrix}=\begin{pmatrix}\chi_{xx}\chi_{xy}\chi_{xz}\\\chi_{yx}\chi_{yy}\chi_{yz}\\\chi_{zx}\chi_{zy}\chi_{zz}\end{pmatrix}\begin{pmatrix}\boldsymbol{\varepsilon}_0E_x\\\boldsymbol{\varepsilon}_0E_y\\\boldsymbol{\varepsilon}_0E_z\end{pmatrix}
egmaterial

Electric hysteresis effect Similar to the magnetic hysteresis effect.

Electric Displacement vectorD\vec D#

E0PσeEE=E0+E\vec{E}_0\to\vec{P}\to\boldsymbol{\sigma'}_e\to\vec{E'}\to\vec{E}=\vec{E}_0+\vec{E'}

D\vec Dmeans:

  • Electric displacement vec
  • electric induction

image-20241020224048323

let q0q_0 be inside charge,qq’ be induced charge

ε0EdA=In(q0+q)PdA=Inqε0EdA=Inq0PdA(ε0E+P)dA=Inq0DdA=InD=ε0E+P=(1+χe)ε0E=κeε0EDdA=Inq0\begin{aligned} &\varepsilon_0\oint\vec{E}\bullet d\vec{A}=\sum_{In}(q_0+q') \\ &\oint\vec{P}\bullet d\vec{A}=-\sum_{In}q' \\ &\iint\varepsilon_0\vec{E}\bullet d\vec{A}=\sum_{In}q_0-\oint\int\vec{P}\bullet d\vec{A} \\ &\oint(\varepsilon_0\vec{E}+\vec{P})\bullet d\vec{A}=\sum_{In}q_0 \\ &\oint\vec{D}\bullet d\vec{A}=\sum_{In}\\ &\vec D=\varepsilon _0\vec E+\vec P=(1+\chi_e)\varepsilon _0 \vec E=\kappa _e\varepsilon _0 \vec E\\ &\boxed{\oint\vec{D}\bullet d\vec{A}=\sum_{In}q_0} \end{aligned}
eg paralleled plate
DdA=q0D1ΔA+D2ΔA=σe0ΔAE1=0,D1=κe1ε0E1=0,D1=0D=D2=σe0=ε0E0E=Dκeε0=ε0E0κeε0=E0κeD=κeε0E\begin{aligned} &\oint\vec{D}\bullet dA=\sum q_0 \\ &D_1\Delta A+D_2\Delta A=\sigma_{e0}\Delta A \\ &\vec{E}_1=0,D_1=\kappa_{e1}\varepsilon_0E_1=0,\therefore D_1=0 \\ &\therefore D=D_2=\sigma_{e0}=\varepsilon_0E_0 \\ &\therefore E=\frac D{\kappa_e\varepsilon_0}=\frac{\varepsilon_0E_0}{\kappa_e\varepsilon_0}=\frac{E_0}{\kappa_e}\\ &\vec D=\kappa _e\varepsilon _0\vec E \end{aligned}
eg charge in a hole
DdA=q04πr2D=q0D=q04πr2E=Dκeε0=q04πε0κer2=E0κe\begin{aligned} &\oint\vec{D}\bullet d\vec{A}=\sum q_0 \\ &4\pi r^2D=q_0 \\ &D=\frac{q_0}{4\pi r^2} \\ &E=\frac{D}{\kappa_e\varepsilon_0}=\frac{q_0}{4\pi\varepsilon_0\kappa_er^2}=\frac{E_0}{\kappa_e} \end{aligned}

Ddl0\displaystyle \oint \vec D\cdot \mathrm d\vec l\neq 0

Pressure Electric Effect#

image-20241020224455711

Chap 31 The Steady Current and Conduction Law#

31-1 The Steady Current and Conduction Law#

i=limΔt0ΔqΔt=dqdti=\lim _{\Delta t\to 0}\frac{\Delta q}{\Delta t}=\frac{\mathrm d q}{\mathrm d t}

the current density vector j\vec j

di=jdA,i=AjdA=AjcosθdA\begin{aligned}&di=\vec{j}\bullet d\vec{A},\\&i=\iint_A\vec{j}\bullet d\vec{A}\\&=\iint_Aj\cos\theta dA\end{aligned}

the steady current condition

AjdA=0j1ΔA1=j2ΔA2\iint_A\vec{j}\bullet d\vec{A}=0\Leftrightarrow j_1\Delta A_1=j_2\Delta A_2

Ohm Law#

  • linear devices :Metal, liquid containing acid, alkali, salt
  • nonlinear devices :Evacuated tube, transistor

image-20241020225112215

Conductance G=1R=dIdV(Unit:S)G=\frac{1}{R}=\frac{\mathrm d I}{\mathrm d V}(Unit:S)​ differential resistance R=dVdIR=\frac{dV}{dI} (in usual context R=VIR=\frac{V}{I} instead)

Resistivity, & conductivity :

we call ρ\rho as resistivity and σ=1ρ\sigma =\frac{1}{\rho} as conductivity , R=ρLAR=\rho \frac{L}{A}

image-20241104090458840

R=ρdlA,σ=1ρR=\int \rho \frac{\mathrm d l}{A}, \sigma =\frac{1}{\rho}

or differential form:j=Eρ=σEj=\frac{E}{\rho}=\sigma E

image-20241020225354688

R=ρdlA=aρdr2πr2=ρ2π[1r]a=ρ2πa\begin{aligned} &R=\int\rho\frac{dl}{A}=\int_a^\infty\rho\frac{dr}{2\pi r^2} \\ &=\frac{\rho}{2\pi}[-\frac{1}{r}]_a^\infty=\frac{\rho}{2\pi a} \end{aligned}
ρT\rho-T relativity

for metal

ρ(T)=ρ0+αT\rho(T)=\rho_0+\alpha T

Differential form of Ohm’s Law#

i=ΔVRi=jdAΔnV=EdlR=ρdlAi = \frac{\Delta V}{R}\\ i=\iint \vec j \cdot d \vec A\Rightarrow \Delta nV=\int \vec E\cdot d\vec l\\R=\int \rho \frac{dl}{A}

it;s the integral form of Ohm’s law

and when treating it as differential form

Δi=ΔVRjΔA=EΔlρΔlΔAj=Eρ=σE\Delta i =\frac{\Delta V}{R}\\ j\Delta A =\frac{E\Delta l}{\rho \frac{\Delta l}{\Delta A}}\\ j=\frac{E}{\rho}=\sigma E

holds for every node

Electric power and Joule Law#

different load consumes different energy form

  • RR consumes theometical energy
  • MachineMachine consumes machinical energy
P=WΔt=iV=i2R=V2RP=\frac W{\Delta t}=iV=i^2R=\frac{V^2}R

Unit kW,WkW,W

1 degree=1kW.h=3.6MJ1~degree =1kW.h=3.6MJ

Microscopic explanation of Ohm Law#

image-20241021092841895

drift speed of electric charge
j=2.4A/mm2b=8.4×1028m3j=ΔiΔA=neuu=jne=1.8×104m/s<<vt105m/sj=2.4A/mm^2\\ b=8.4\times 10^{28}m^{-3}\\ j=\frac{\Delta i}{\Delta A}=neu\\ u=\frac{j}{ne}=1.8\times 10^{-4}m/s<<v_t\approx 10^5m/s

31-2 Source and Electromotive Force(emf)#

Edl=0\oint \vec E\bullet d\vec l =0

only E and no current!

j=σ(K+E)\vec j =\sigma(\vec K+\vec E)

for emf

ε=Kdl+Kdl\varepsilon =\oint \vec K dl\approx \int _{-}^+ \vec K \cdot d\vec l

Terminal Voltage of a Seat#

Discharge with RR,and charge with ε\varepsilon ',

ΔV=+Edlin a seat:E=K+jσΔV=+Kdl+ρjdlcosθ=ε±(jA+ρdlA)=ε±ir\Delta V=\int _{+}^{-}\vec E\cdot d\vec l\\ \text{in~a~seat}:\vec E=-\vec K+\frac{\vec j}{\sigma}\\ \Delta V=\int_{-}^+ \vec K\cdot d\vec l-\int_{-}^+ \rho j dl \cos \theta\\=\varepsilon \pm (-jA\int_{-}^+ \frac{\rho d l}{A})=\varepsilon\pm ir

the terminal voltage between ends

image-20241104092151726 image-20241104092234306
  • Discharge:

    • ΔVAB=εir\Delta V_{AB}=\varepsilon -ir
  • Charge

    • ΔVAB=ε+ir\Delta V_{AB}=\varepsilon +ir

the current and output power for closed circuit#

i=εR+ri=\frac{\varepsilon }{R+r} Pout=iVAB=(εR+r)2RP_{out}=iV_{AB}=\left(\frac{\varepsilon}{R+r}\right)^2R

P˙out=0ε2rR(R+r)2=0,R=r\dot P_{out}=0\Rightarrow \varepsilon ^2 \frac{r-R}{(R+r)^2}=0,R^*=r

image-20241104092654739

j=σE,S=E×Hj=\sigma \vec E,\vec S=\vec E\times \vec H

31-3 Simple circuit#

Resistors connected in Series and Parallel

  • R=RiR=\sum R_i
  • R1=Ri1R^{-1}=\sum R_i^{-1}
Voltmeter and Amperemeter
  • Galvanometer

    Ig=50μA,Rg=1kΩI_g=50\mu A,R_g =1k\Omega

image-20241104093208377

Ig=URg+Rm Rm=UIgRgIg=UIgRg=199kΩI_g =\frac{U}{R_g+R_m}\ R_m=\frac{U-I_gR_g}{I_g}=\frac{U}{I_g}-R_g =199k\Omega

image-20241104093437907

IgRg=(IIg)RsRs=IgIIgRgI_gR_g =(I-I_g)R_s\\R_s=\frac{I_g}{I-I_g}R_g
普物二总结Chap25~Chap31电学部分
https://zzw4257.cn/posts/basic-knowledge/physics2-1/
作者
zzw4257
发布于
2024-10-07
许可协议
CC BY-NC-SA 4.0